An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

B.Tech. in COMPUTER SCIENCE AND ENGINEERING COURSE STRUCTURE & SYLLABUS

(R22 Regulations-Autonomous)

Applicable from 2022-23 Batch

I Year I Semester

S.	Course	Cours	L	T	P	Credit
No.	Code	e				S
1.	A1008	Matrices and Calculus	3	1	0	4
2.	A1003	Engineering Chemistry	3	1	0	4
3.	A1505	Programming for Problem Solving	3	0	0	3
4.	A1401	Basic Electrical Engineering	2	0	0	2
5.	A1301	Computer Aided Engineering Graphics	1	0	4	3
6.	A1504	Elements of Computer Science & Engineering	0	0	2	1
7.	A1004	Engineering Chemistry Laboratory	0	0	2	1
8.	A1506	Programming for Problem Solving Laboratory	0	0	2	1
9.	A1402	Basic Electrical Engineering Laboratory	0	0	2	1
10		Induction Programme				
		Total	12	2	12	20

I Year II Semester

S.	Course	Cours	L	T	P	Credit
No.	Code	e				S
1.	A1010	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	A1001	Applied Physics	3	1	0	4
3.	A1303	Engineering Workshop	0	1	3	2.5
4.	A1005	English for Skill Enhancement	2	0	0	2
5.	A1508	Data Structures	3	0	0	3
6.	A1002	Applied Physics Laboratory	0	0	3	1.5
7.	A1509	Data Structures Laboratory	0	0	2	1
8.	A1006	English Language and Communication Skills	0	0	2	1
		Laboratory				
9.	A1512	IT Workshop	0	0	2	1
10	A1007	Environmental Science	3	0	0	0
		Total	14	3	12	20

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

II YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	P	Credit
						S
1	A1406	Analog and Digital Electronics	3	0	0	3
2	A1513	Python Programming	3	0	0	3
3	A1011	Computer Oriented Statistical Methods	3	1	0	4
4	A1515	Computer Organization and Architecture	3	0	0	3
5	A1516	Database Management Systems	3	0	0	3
6	A1514	Python Programming Lab	0	0	3	1.5
7	A1517	Database Management Systems Lab	0	0	3	1.5
8	A1018	Gender Sensitization Lab	0	0	2	0
9	A1518	Skill Development Course (Data visualization- R	0	0	2	1
		Programming/ Power BI)				
10	A1009	Human Values & Ethics	2	0	0	0
		Total	17	1	10	20

II YEAR II SEMESTER

S. No.	Course Code	Course	L	Т	P	Credit
	Code	Title				S
1	A1519	Discrete Mathematics	3	0	0	3
2	A1016	Business Economics & Financial Analysis	3	0	0	3
3	A1603	Operating Systems	3	0	0	3
4	A1520	Object Oriented Programming through Java	3	0	0	3
5	A1601	Software Engineering	3	0	0	3
6	A1604	Operating Systems Lab	0	0	2	1
7	A1521	Object Oriented Programming through Java Lab	0	0	2	1
8	A1522	Real-time Research Project/ Societal Related	0	0	4	2
		Project	U	U	7	2
9	A1605	Skill Development Course (Node JS/ React JS/	0	0	2	1
		Django)				
10	A1017	Constitution of India	3	0	0	0
		Total	18	0	10	20

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

III YEAR I SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1	A1523	Design and Analysis of Algorithms	3	0	0	3
2	A1524	Computer Networks	3	0	0	3
3	A1526	Web Technologies	3	0	0	3
4		Professional Elective-I	3	0	0	3
5		Professional Elective -II	3	0	0	3
6	A1525	Computer Networks Lab	0	0	2	1
7	A1527	Web Technologies Lab	0	0	2	1
8	A1019	Advanced English Communication Skills	0	0	2	1
		Lab				
9	A1021	Logical Reasoning – 1	0	0	2	1
10	A1020	Intellectual Property Rights	3	0	0	0
11	A1528	Skill Development Course(UI Design-	0	0	2	1
		Flutter)				
		Total	18	0	10	20

III YEAR II SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1	A1529	Cloud Computing	3	0	0	3
2	A1606	Automata Theory and Compiler Design	3	0	0	3
3	A1611	Machine Learning	3	0	0	3
4		Professional Elective – III	3	0	0	3
5		Open Elective-I	3	0	0	3
6	A1612	Machine Learning Lab	0	0	2	1
7		Professional Elective-III Lab	0	0	2	1
8	A1530	Cloud Computing Lab	0	0	2	1
	A1022	Logical Reasoning – II	0	0	2	1
9	A1531	Industrial Oriented Mini Project/ Internship/	0	0	2	1
		Skill Development Course (Big data-Spark)	U	U	2	1
10	A1007	Environmental Science	3	0	0	0
		Total	18	0	10	20

^{*} Environmental Science in III Yr II Sem Should be Registered by Lateral Entry Students Only.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

IV YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	P	Credit s
1		Cryptography and Network Security	3	0	0	3
2		Dev Ops	3	0	0	3
3		Professional Elective -IV	3	0	0	3
4		Professional Elective -V	3	0	0	3
5		Open Elective - II	3	0	0	3
6		Cryptography and Network Security Lab	0	0	2	1
7		Dev Ops Lab	0	0	2	1
8		Project Stage - I	0	0	6	3
		Total Credits	15	0	10	20

IV YEAR II SEMESTER

S. No.	Course	Course Title	L	Т	P	Credits
	Code					
1		Organizational Behavior	3	0	0	3
2		Professional Elective – VI	3	0	0	3
3		Open Elective – III	3	0	0	3
4		Project Stage – II including Seminar	0	0	22	11
		Total Credits	9	0	22	20

Professional Elective - I

A1551	Artificial Intelligence
A1552	Advanced Computer Architecture
A1553	Data Analytics
A1554	Image Processing
A1555	Principles of Programming Languages

Professional Elective - II

A1556	Cyber Security
A1557	Embedded Systems
A1558	Information Retrieval Systems
A1655	Soft Computing
A1559	Natural Language Processing

Professional Elective - III

A1560	Full Stack Development
A1562	Internet of Things

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

A1564	Scripting Languages
A1566	Mobile Application Development
A1568	Software Testing Methodologies

Professional Elective – III Lab

A1561	Full Stack Development Lab
A1563	Internet of Things Lab
A1565	Scripting Languages Lab
A1567	Mobile Application Development Lab
A1569	Software Testing Methodologies Lab

Professional Elective -IV

G ₁	raph Theory
Di	istributed Databases
Qı	uantum Computing
Co	omputer Graphics
Da	ata Mining

Professional Elective -V

1	Advanced Algorithms
	Agile Methodology
I	Robotic Process Automation
]	Block chain Technology
	Software Process & Project Management

Professional Elective - VI

Re	einforcement Learning
D	istributed Systems
Bi	ig Data Analytics
H	uman Computer Interaction
C	yber Forensics

Open Elective – I

- 1. Data Structures(A1591)
- 2. Database Management System(A1592)

Open Elective - II:

- 1. Python Programming
- 2.Software Engineering

Open Elective - III:

- 1. Algorithms Design and Analysis
- 2.Deep Learning

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

MATRICES AND CALCULUS

B.Tech. I Year I Sem.

L T P C 3 1 0 4

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn

- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of eigen values and eigenvectors and to reduce the quadratic form to canonical form
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.
- Evaluation of multiple integrals and their applications

Course outcomes: After learning the contents of this paper the student must be able to

- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigenvalues and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/ without constraints.
- Evaluate the multiple integrals and apply the concept to find areas, volumes

UNIT - I: Matrices

Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordanmethod, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Gauss Seidel Iteration Method.

UNIT - II: Eigen values and Eigen vectors

Linear Transformation and Orthogonal Transformation: Eigen values, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - III: Calculus

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series.

Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT - IV: Multivariable Calculus (Partial Differentiation and applications)

Definitions of Limit and continuity.

Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence & independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliersUNIT-V: Multivariable Calculus (Integration)

Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals.

Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals).

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Editon, 2016.

- 1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition,Pearson, Reprint,2002.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and CompanyLimited, New Delhi.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENGINEERING CHEMISTRY L T P C 3 1 0 4

B.Tech. I Year I Sem.

(Common to CSE,CSE(DS))

Course Objectives:

An Autonomous Institution

SREYAS
INSTITUTE OF ENGINEERING AND TECHNOLOGY

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 1. To bring adaptability to new developments in Engineering Chemistry and to acquire the skillsrequired to become a perfect engineer.
- 2. To include the importance of water in industrial usage, fundamental aspects of batterychemistry, significance of corrosion it's control to protect the structures.
- 3. To imbibe the basic concepts of petroleum and its products.
- 4. To acquire required knowledge about engineering materials like cement, smart materials and Lubricants.

Course Outcomes:

- 1. Students will acquire the basic knowledge of electrochemical procedures related to corrosionand its control.
- 2. The students are able to understand the basic properties of water and its usage in domestic and industrial purposes.
- 3. They can learn the fundamentals and general properties of polymers and other engineering materials.
- 4. They can predict potential applications of chemistry and practical utility in order to become goodengineers and entrepreneurs.

UNIT - I: Water and its treatment:

Introduction to hardness of water – Estimation of hardness of water by complexometric method and related numerical problems. Potable water and its specifications - Steps involved in the treatment of potable water - Disinfection of potable water by chlorination and break - point chlorination. Defluoridation

- Determination of F ion by ion- selective electrode method. Boiler troubles: Sludges, Scales and Caustic embrittlement. Internal treatment of Boiler feed water - Calgon conditioning - Phosphate conditioning - Colloidal conditioning, External treatment methods - Softening of water by ion- exchange processes. Desalination of water – Reverse osmosis.

UNIT – II Battery Chemistry & Corrosion

Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basic requirements for commercial batteries. Construction, working and applications of: Zn-air and Lithium ion battery, Applications of Li-ion battery to electrical vehicles. Fuel Cells- Differences between battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell and Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells.

Corrosion: Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current methods.

An Autonomous Institution

SREYAS
INSTITUTE OF ENGINEERING AND TECHNOLOGY

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - III: Polymeric materials:

Definition – Classification of polymers with examples – Types of polymerization –

addition (free radical addition) and condensation polymerization with examples – Nylon 6:6, Terylene **Plastics:** Definition and characteristics- thermoplastic and thermosetting plastics, Preparation, Properties and engineering applications of PVC and Bakelite, Teflon, Fiber reinforced plastics (FRP). **Rubbers:** Natural rubber and its vulcanization.

Elastomers: Characteristics –preparation – properties and applications of Buna-S, Butyl and Thiokolrubber.

Conducting polymers: Characteristics and Classification with examples-mechanism of conduction intrans-polyacetylene and applications of conducting polymers.

Biodegradable polymers: Concept and advantages - Polylactic acid and poly vinyl alcohol and their applications.

UNIT - IV: Energy Sources:

Introduction, Calorific value of fuel – HCV, LCV- Dulongs formula. Classification- solid fuels: coal – analysis of coal – proximate and ultimate analysis and their significance. Liquid fuels – petroleum and its refining, cracking types – moving bed catalytic cracking. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch's process; Gaseous fuels – composition and uses of natural gas, LPG and CNG, Biodiesel – Transesterification, advantages.

UNIT - V: Engineering Materials:

Cement: Portland cement, its composition, setting and hardening.

Smart materials and their engineering applications

Shape memory materials- Poly L- Lactic acid. Thermoresponse materials- Polyacryl amides, Poly vinylamides

Lubricants: Classification of lubricants with examples-characteristics of a good lubricants - mechanismof lubrication (thick film, thin film and extreme pressure)- properties of lubricants: viscosity, cloud point, pour point, flash point and fire point.

TEXT BOOKS:

- 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010
- 2. Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage learning, 2016
- 3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K.Shashikala, Pearson Publications, 2021.
- 4. Textbook of Engineering Chemistry by Java Shree Anireddy, Wiley Publications.

- 1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015)
- 2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011)

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

PROGRAMMING FOR PROBLEM SOLVING

B.Tech. I Year I Sem.

(Common to CSE,CSE(AIML),CSE(DS)) 3 0 0 3

LTPC

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

PROGRAMMING FOR PROBLEM SOLVING

(Common to CSE,CSE(AIML),CSE(DS))

B.Tech. I Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of the C programming language.
- To learn the usage of structured programming approaches in solving problems.

Course Outcomes: The student will learn

- To write algorithms and to draw flowcharts for solving problems.
- To convert the algorithms/flowcharts to C programs.
- To code and test a given logic in the C programming language.
- To decompose a problem into functions and to develop modular reusable code.
- To use arrays, pointers, strings and structures to write C programs.
- Searching and sorting problems.

UNIT - I: Introduction to Programming

Compilers, compiling and executing a program. Representation of Algorithm - Algorithms for finding roots of a quadratic equations, finding minimum numbers and maximum numbers of a given set, finding if a number is prime number Flowchart / Pseudocode withexamples, Program design and structured programming.

Introduction to C Programming Language: variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments Bitwise operations: Bitwise AND, OR, XOR and NOT operators Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do- while loops

I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr.Command line arguments

UNIT - II: Arrays, Strings, Structures and Pointers:

Arrays: one and two dimensional arrays, creating, accessing and manipulating elements of arrays **Strings:** Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings

Structures: Defining structures, initializing structures, unions, Array of structures

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-referential structures, usage of self referential structures in linked list (no implementation) Enumerationdata type

UNIT - III: Preprocessor and File handling in C:

Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell andrewind functions.

UNIT - IV: Function and Dynamic Memory Allocation:

Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries

Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types.

UNIT - V: Searching and Sorting:

Basic searching in an array of elements (linear and binary search techniques), Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms), Basic concept of order of complexitythrough the example programs.

TEXT BOOKS:

- 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition.Pearson
- 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rdEdition)

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall ofIndia
- 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
- 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
- 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
- 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
- 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

BASIC ELECTRICAL ENGINEERING

B.Tech. I Year I Sem.

(Common to CSE,CSE(DS))

L T P C

Prerequisites:

2 0 0 2

Mathematics

Course Objectives:

- To understand DC and Single & Three phase AC circuits
- To study and understand the different types of DC, AC machines and Transformers.
- To import the knowledge of various electrical installations and the concept of power, powerfactor and its improvement.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand and analyze basic Electrical circuits
- Study the working principles of Electrical Machines and Transformers
- Introduce components of Low Voltage Electrical Installations.

UNIT-I:

D.C. Circuits: Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

UNIT-II:

A.C. Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III:

Transformers: Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV:

Electrical Machines: Construction and working principle of dc machine, performance characteristics of dc shunt machine. Generation of rotating magnetic field, Construction and working of a three-phase induction motor, Significance of torque-slip characteristics. Single-phase induction motor, Construction and working. Construction and working of synchronous generator.

UNIT-V:

Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS:

- 1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition.2019.
- 2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

- 1. P. Ramana, M. Suryakalavathi, G.T. Chandrasheker, "Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
- 3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1stEdition, 2012.
- 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021.
- 5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

COMPUTER AIDED ENGINEERING GRAPHICS

B.Tech. I Year I Sem.

(Common to CSE, CSE(DS))

L T P C 1 0 4 3

Course Objectives:

- To develop the ability of visualization of different objects through technical drawings
- To acquire computer drafting skill for communication of concepts, ideas in the design of engineering products

Course Outcomes: At the end of the course, the student will be able to:

- Apply computer aided drafting tools to create 2D and 3D objects
- sketch conics and different types of solids
- Appreciate the need of Sectional views of solids and Development of surfaces of solids
- Read and interpret engineering drawings
- Conversion of orthographic projection into isometric view and vice versa manually and by using computer aided drafting

UNIT - I:

Introduction to Engineering Graphics: Principles of Engineering Graphics and their Significance, Scales – Plain & Diagonal, Conic Sections including the Rectangular Hyperbola – General method only. Cycloid, Epicycloid and Hypocycloid, Introduction to Computer aided drafting – views, commands and conics

UNIT-II:

Orthographic Projections: Principles of Orthographic Projections – Conventions – Projections of Points and Lines, Projections of Plane regular geometric figures. Auxiliary Planes. Computer aided orthographic projections – points, lines and planes

UNIT - III:

Projections of Regular Solids – Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views, Computer aided projections of solids – sectional views

UNIT - IV:

Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Development of surfaces using computer aided drafting

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V:

Isometric Projections: Principles of Isometric Projection – Isometric Scale – Isometric Views – Conventions – Isometric Views of Lines, Plane Figures, Simple and Compound Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of Spherical Parts. Conversion of Isometric Views to Orthographic Views and Vice-versa – Conventions. Conversion of orthographic projection into isometric view using computer aided drafting.

TEXT BOOKS:

- 1. Engineering Drawing N.D. Bhatt / Charotar
- 2. Engineering Drawing and graphics Using AutoCAD Third Edition, T. Jeyapoovan, Vikas: S.Chand and company Ltd.

REFERENCE BOOKS:

- 1. Engineering Drawing, Basant Agrawal and C M Agrawal, Third Edition McGraw Hill
- 2. Engineering Graphics and Design, WILEY, Edition 2020
- 3. Engineering Drawing, M. B. Shah, B.C. Rane / Pearson.
- 4. Engineering Drawing, N. S. Parthasarathy and Vela Murali, Oxford
- 5. Computer Aided Engineering Drawing K Balaveera Reddy et al CBS Publishers

Note: - External examination is conducted in conventional mode and internal evaluation to be done byboth conventional as well as using computer aided drafting.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ELEMENTS OF COMPUTER SCIENCE AND ENGINEERING

(Common to CSE,CSE (AIML),CSE(DS))

B.Tech. I Year I Sem. **L T P C** 0 0 2 1

Course Objective: To provide an overview of the subjects of computer science and engineering.

Course Outcomes:

- 1. Know the working principles of functional units of a basic Computer
- 2. Understand program development, the use of data structures and algorithms in problemsolving.
- 3. Know the need and types of operating system, database systems.
- 4. Understand the significance of networks, internet, WWW and cyber security.
- 5. Understand Autonomous systems, the application of artificial intelligence.

UNIT – I

Basics of a Computer – Hardware, Software, Generations of computers. Hardware - functional units, Components of CPU, Memory – hierarchy, types of memory, Input and output devices. Software – systems software, application software, packages, frameworks, IDEs.

UNIT – II

Software development – waterfall model, Agile, Types of computer languages – Programming, markup, scripting Program Development – steps in program development, flowcharts, algorithms, datastructures – definition, types of data structures.

UNIT – III

Operating systems: Functions of operating systems, types of operating systems, Device & Resourcemanagement

Database Management Systems: Data models, RDBMS, SQL, Database Transactions, data centers, cloud services.

UNIT - IV

Computer Networks: Advantages of computer networks, LAN, WAN, MAN, internet, WiFi, sensornetworks, vehicular networks, 5G communication.

World Wide Web – Basics, role of HTML, CSS, XML, Tools for web designing, Social media, Onlinesocial networks.

Security – information security, cyber security, cyber laws.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Autonomous Systems: IoT, Robotics, Drones, Artificial Intelligence – Learning, Game Development, natural language processing, image and video processing. Cloud Basics.

TEXT BOOK:

1. Invitation to Computer Science, G. Michael Schneider, Macalester College, Judith L. Gersting University of Hawaii, Hilo, Contributing author: Keith Miller University of Illinois, Springfield.

- 1. Fundamentals of Computers, Reema Thareja, Oxford Higher Education, Oxford University Press.
- 2. Introduction to computers, Peter Norton, 8th Edition, Tata McGraw Hill.
- 3. Computer Fundamentals, Anita Goel, Pearson Education India, 2010.
- 4. Elements of computer science, Cengage.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENGINEERING CHEMISTRY LABORATORY

B.Tech. I Year I Sem.

(Common to CSE, CSE (DS))

L T P C 0 0 2 1

Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness of water to check its suitability for drinking purpose.
- Students are able to perform estimations of acids and bases using conductometry, potentiometry and pH metry methods.
- Students will learn to prepare polymers such as Bakelite and nylon-6 in the laboratory.
- Students will learn skills related to the lubricant properties such as saponification value, surfacetension and viscosity of oils.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness of water and rate of corrosion of mild steel in various conditions.
- Able to perform methods such as conductometry, potentiometry and pH metry in order to findout the concentrations or equivalence points of acids and bases.
- Students are able to prepare polymers like bakelite and nylon-6.
- Estimations saponification value, surface tension and viscosity of lubricant oils.

List of Experiments:

- **I. Volumetric Analysis:** Estimation of Hardness of water by EDTA Complexometry method.
- **II. Conductometry:** Estimation of the concentration of an acid by Conductometry.
- **III. Potentiometry:** Estimation of the amount of Fe⁺² by Potentiomentry.
- **IV. pH Metry:** Determination of an acid concentration using pH meter.

V. Preparations:

- 1. Preparation of Bakelite.
- 2. Preparation Nylon -6.

VI. Lubricants:

- 1. Estimation of acid value of given lubricant oil.
- 2. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer.
- VII. Corrosion: Determination of rate of corrosion of mild steel in the presence and absence of inhibitor.

VIII. Virtual lab experiments

- 1. Construction of Fuel cell and its working.
- 2. Smart materials for Biomedical applications
- 3. Batteries for electrical vehicles.
- 4. Functioning of solar cell and its applications.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
- 2. Vogel's text book of practical organic chemistry 5th edition
- 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications.
- 4. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New Delhi (2007).

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

PROGRAMMING FOR PROBLEM SOLVING LABORATORY

(Common to CSE,CSE(AIML),CSE(DS))

B.Tech. I Year I Sem.

L T P C

0 0 2 1

[Note: The programs may be executed using any available Open Source/ Freely available

IDESome of the Tools available are:

CodeLite: https://codelite.org/

Code:Blocks:

http://www.codeblocks.org/

DevCpp:

http://www.bloodshed.net/devcpp.html

Eclipse: http://www.eclipse.org

This list is not exhaustive and is NOT in any order of preference]

Course Objectives: The students will learn the following:

- To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C likeoperators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To Write programs using the Dynamic Memory Allocation concept.
- To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:

- formulate the algorithms for simple problems
- translate given algorithms to a working and correct program
- correct syntax errors as reported by the compilers
- identify and correct logical errors encountered during execution
- represent and manipulate data with arrays, strings and structures
- use pointers of different types
- create, read and write to and from simple text and binary files
- modularize the code with functions so that they can be reused

Practice sessions:

- a. Write a simple program that prints the results of all the operators available in C (including pre/post increment, bitwise and/or/not, etc.). Read required operand values from standard input.
- b. Write a simple program that converts one given data type to another using auto conversion and casting. Take the values from standard input.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Simple numeric problems:

- a. Write a program for finding the max and min from the three numbers.
- b. Write the program for the simple, compound interest.
- c. Write a program that declares Class awarded for a given percentage of marks, where mark <40% = Failed, 40% to <60% = Second class, 60% to <70% = First class, >= 70% = Distinction. Read percentage from standard input.
- d. Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be:
- e. $5 \times 1 = 5$
- f. $5 \times 2 = 10$
- g. $5 \times 3 = 15$
- h. Write a program that shows the binary equivalent of a given positive number between 0 to 255.

Expression Evaluation:

- a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula $s = ut + (1/2)at^2$ where u and a are the initial velocity in m/sec (= 0) and acceleration in m/sec² (= 9.8 m/s²).
- b. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)
- c. Write a program that finds if a given number is a prime number
- d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.
- e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Writea C program to generate the first n terms of the sequence.
- f. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
- g. Write a C program to find the roots of a Quadratic equation.
- h. Write a C program to calculate the following, where x is a fractional value.i. $1-x/2 + x^2/4-x^3/6$
- j. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: $1+x+x^2+x^3+ +x^n$. For example: if n is 3 and x is 5, then the program
 - computes 1+5+25+125.

Arrays, Pointers and Functions:

- a. Write a C program to find the minimum, maximum and average in an array of integers.
- b. Write a function to compute mean, variance, Standard Deviation, sorting of n elements in a single dimension array.
- c. Write a C program that uses functions to perform the following:

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- d. Addition of Two Matrices
- e. Multiplication of Two Matrices
- f. Transpose of a matrix with memory dynamically allocated for the new matrix as row and columncounts may not be the same.
- g. Write C programs that use both recursive and non-recursive functions
- h. To find the factorial of a given integer.
- i. To find the GCD (greatest common divisor) of two given integers.
- j. To find x^n
- k. Write a program for reading elements using a pointer into an array and display the values using the array.
- I. Write a program for display values reverse order from an array using a pointer.
- m. Write a program through a pointer variable to sum of n elements from an array.

Files:

- a. Write a C program to display the contents of a file to standard output device.
- b. Write a C program which copies one file to another, replacing all lowercase characters withtheir uppercase equivalents.
- c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.
- d. Write a C program that does the following: It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function)
 - Now the program asks for an index and a value from the user and the value at that index shouldbe changed to the new value in the file. (hint: use fseek function)
 - The program should then read all 10 values and print them back.
- e. Write a C program to merge two files into a third file (i.e., the contents of the first file followedby those of the second are put in the third file).

Strings:

- a. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.
- b. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent
- c. Write a C program that uses functions to perform the following operations:
- d. To insert a sub-string into a given main string from a given position.
- e. To delete n Characters from a given position in a given string.
- f. Write a C program to determine if the given string is a palindrome or not (Spelled same in bothdirections with or without a meaning like madam, civic, noon, abcba, etc.)
- g. Write a C program that displays the position of a character ch in the string S or -1 if S doesn'tcontain ch.
- h. Write a C program to count the lines, words and characters in a given text.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Miscellaneous:

- a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.
- b. Write a C program to construct a pyramid of numbers as follows:

1	*	1	1	*
1 2	* *	2 3	2 2	* *
123	* * *	4 5 6	3 3 3	* *
				*
			4444	* *
				10

Sorting and Searching:

- a. Write a C program that uses non recursive function to search for a Key value in a given
- b. list of integers using linear search method.
- c. Write a C program that uses non recursive function to search for a Key value in a given
- d. sorted list of integers using binary search method.
- e. Write a C program that implements the Bubble sort method to sort a given list of
- f. integers in ascending order.
- g. Write a C program that sorts the given array of integers using selection sort in descending order
- h. Write a C program that sorts the given array of integers using insertion sort in ascending order
- i. Write a C program that sorts a given array of names

TEXT BOOKS:

- 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition, Pearson
- 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rdEdition)

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, PHI
- 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
- 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
- 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
- 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
- 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

BASIC ELECTRICAL ENGINEERING LABORATORY

(Common to CSE,CSE(DS))

B.Tech. I Year I Sem.

L T P C

Prerequisites: Basic Electrical Engineering

Course Objectives:

- To measure the electrical parameters for different types of DC and AC circuits using conventional and theorems approach.
- To study the transient response of various R, L and C circuits using different excitations.
- To determine the performance of different types of DC, AC machines and Transformers.

Course Outcomes: After learning the contents of this paper the student must be able to

- Verify the basic Electrical circuits through different experiments.
- Evaluate the performance calculations of Electrical Machines and Transformers throughvarious testing methods.
- Analyze the transient responses of R, L and C circuits for different input conditions.

List of experiments/demonstrations:

PART- A (compulsory)

- 1. Verification of KVL and KCL
- 2. Verification of Thevenin's and Norton's theorem
- 3. Transient Response of Series RL and RC circuits for DC excitation
- 4. Resonance in series RLC circuit
- 5. Calculations and Verification of Impedance and Current of RL, RC and RLC seriescircuits
- 6. Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of aSingle-Phase Transformer
- 7. Performance Characteristics of a DC Shunt Motor
- 8. Torque-Speed Characteristics of a Three-phase Induction Motor.

PART-B (any two experiments from the given list)

- 1. Verification of Superposition theorem.
- 2. Three Phase Transformer: Verification of Relationship between Voltages and Currents(Star-Delta, Delta-Delta, Delta-star, Star-Star)
- 3. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
- 4. Measurement of Active and Reactive Power in a balanced Three-phase circuit
- 5. No-Load Characteristics of a Three-phase Alternator

TEXT BOOKS:

- 1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019.
- 2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 1. P. Ramana, M. Suryakalavathi, G.T.Chandrasheker,"Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
- 3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
- 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic ElectricalEngineering", 2nd Edition, McGraw Hill, 2021.
- 5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

B.Tech. I Year II Sem.

L T P C 3 1 0 4

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn

- Methods of solving the differential equations of first and higher order.
- Concept, properties of Laplace transforms
- Solving ordinary differential equations using Laplace transforms techniques.
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course outcomes: After learning the contents of this paper the student must be able to

- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real worldproblems.
- Use the Laplace transforms techniques for solving ODE's.
- Evaluate the line, surface and volume integrals and converting them from one to another

UNIT-I: First Order ODE

Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli's equations, Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling, Law of natural growth and decay.

UNIT-II: Ordinary Differential Equations of Higher Order

 \mathbf{L}

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax} , sin a, cos ax, polynomials in x, $e^{ax}V(x)$ and x V(x), method of variation of parameters, Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation. Applications: Electric Circuits

UNIT-III: Laplace transforms

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by 't', Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV: Vector Differentiation

Vector point functions and scalar point functions, Gradient, Divergence and Curl, Directional derivatives, Tangent plane and normal line, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors.

UNIT-V: Vector Integration

Line, Surface and Volume Integrals, Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016.

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 3. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and CompanyLimited, New Delhi.
- 4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

APPLIED PHYSICS

B.Tech. I Year II Sem.

L T P C 3 1 0 4

Pre-requisites: 10 + 2 Physics

Course Objectives: The objectives of this course for the student are to:

- 1. Understand the basic principles of quantum physics and band theory of solids.
- 2. Understand the underlying mechanism involved in construction and working principles of various semiconductor devices.
- 3. Study the fundamental concepts related to the dielectric, magnetic and energy materials.
- 4. Identify the importance of nanoscale, quantum confinement and various fabricationstechniques.
- 5. Study the characteristics of lasers and optical fibres.

Course Outcomes: At the end of the course the student will be able to:

- 1. Understand physical world from fundamental point of view by the concepts of Quantum mechanics and visualize the difference between conductor, semiconductor, and an insulator by classification of solids.
- 2. Identify the role of semiconductor devices in science and engineering Applications.
- 3. Explore the fundamental properties of dielectric, magnetic materials and energy for their applications.
- 4. Appreciate the features and applications of Nanomaterials.
- 5. Understand various aspects of Lasers and Optical fiber and their applications in diverse fields.

UNIT - I: QUANTUM PHYSICS AND SOLIDS

Quantum Mechanics: Introduction to quantum physics, blackbody radiation – Stefan-Boltzmann's law, Wein's and Rayleigh-Jean's law, Planck's radiation law - photoelectric effect - Davisson and Germer experiment –Heisenberg uncertainty principle - Born interpretation of the wave function – time independent Schrodinger wave equation - particle in one dimensional potential box.

Solids: Symmetry in solids, free electron theory (Drude & Lorentz, Sommerfeld) - Fermi-Dirac distribution - Bloch's theorem -Kronig-Penney model – E-K diagram- effective mass of electron-origin of energy bands- classification of solids.

UNIT - II: SEMICONDUCTORS AND DEVICES

Intrinsic and extrinsic semiconductors – Hall effect - direct and indirect band gap semiconductors - construction, principle of operation and characteristics of P-N Junction diode, Zener diode and bipolar junction transistor (BJT)–LED, PIN diode, avalanche photo diode (APD) and solar cells, their structure, materials, working principle and characteristics.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - III: DIELECTRIC, MAGNETIC AND ENERGY MATERIALS

Dielectric Materials: Basic definitions- types of polarizations (qualitative) - ferroelectric, piezoelectric, and pyroelectric materials – applications – liquid crystal displays (LCD) and crystal oscillators.

Magnetic Materials: Hysteresis - soft and hard magnetic materials -magnetostriction, magnetoresistance - applications - bubble memory devices, magnetic field sensors and multiferroics. Energy Materials: Conductivity of liquid and solid electrolytes- superionic conductors - materials and electrolytes for super capacitors - rechargeable ion batteries, solid fuel cells.

UNIT - IV: NANOTECHNOLOGY

Nanoscale, quantum confinement, surface to volume ratio, bottom-up fabrication: sol-gel, precipitation, combustion methods – top-down fabrication: ball milling - physical vapor deposition (PVD) - chemical vapor deposition (CVD) - characterization techniques - XRD, SEM &TEM - applications of nanomaterials.

UNIT - V: LASER AND FIBER OPTICS

Lasers: Laser beam characteristics-three quantum processes-Einstein coefficients and their relations- lasing action - pumping methods- ruby laser, He-Ne laser, CO2 laser, Argon ion Laser, Nd:YAG laser-semiconductor laser-applications of laser.

Fiber Optics: Introduction to optical fiber- advantages of optical Fibers - total internal reflection- construction of optical fiber - acceptance angle - numerical aperture- classification of optical fibers- losses in optical fiber - optical fiber for communication system - applications.

TEXT BOOKS:

- 1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"-
 - S. Chand Publications, 11th Edition 2019.
- 2. Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson Publication, 2019
- 3. Semiconductor Physics and Devices- Basic Principle Donald A, Neamen, Mc Graw Hill, 4thEdition, 2021.
- 4. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2ndEdition, 2022.
- 5. Essentials of Nanoscience & Nanotechnology by Narasimha Reddy Katta, Typical CreativesNANO DIGEST, 1st Edition, 2021.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 1. Quantum Physics, H.C. Verma, TBS Publication, 2nd Edition 2012.
- 2. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley &Sons,11th Edition, 2018.
- 3. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019.
- 4. Elementary Solid State Physics, S.L. Gupta and V. Kumar, Pragathi Prakashan, 2019.
- 5. A.K. Bhandhopadhya Nano Materials, New Age International, 1stEdition, 2007.
- 6. Energy Materials a Short Introduction to Functional Materials for Energy Conversion and Storage Aliaksandr S. Bandarenka, CRC Press Taylor & Francis Group
- 7. Energy Materials, Taylor & Francis Group, 1st Edition, 2022.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENGINEERING WORKSHOP

B.Tech. I Year II Sem.

L T P C

0 1 3 2.5

Pre-requisites: Practical skill

Course Objectives:

- To Study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:

- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

1. TRADES FOR EXERCISES:

At least two exercises from each trade:

- I. Carpentry (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
- II. Fitting (V-Fit, Dovetail Fit & Semi-circular fit)
- III. Tin-Smithy (Square Tin, Rectangular Tray & Conical Funnel)
- IV. Foundry (Preparation of Green Sand Mould using Single Piece and Split Pattern)
- V. Welding Practice (Arc Welding & Gas Welding)
- VI. House-wiring (Parallel & Series, Two-way Switch and Tube Light)
- VII. Black Smithy (Round to Square, Fan Hook and S-Hook)

2. TRADES FOR DEMONSTRATION & EXPOSURE:

Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and WoodWorking

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- 1. Workshop Practice /B. L. Juneja / Cengage
- 2. Workshop Manual / K. Venugopal / Anuradha.

- 1. Work shop Manual P. Kannaiah/ K.L. Narayana/ Scitech
- 2. Workshop Manual / Venkat Reddy/ BSP

SREYAS INSTITUTE OF ENGINEERING AND TECHNOLOGY

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENGLISH FOR SKILL ENHANCEMENT

B.Tech. I Year II Sem.

L T P C

Course Objectives: This course will enable the students to:

- 1. Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- 2. Develop study skills and communication skills in various professional situations.
- 3. Equip students to study engineering subjects more effectively and critically using the theoretical and practical components of the syllabus.

Course Outcomes: Students will be able to:

- 1. Understand the importance of vocabulary and sentence structures.
- 2. Choose appropriate vocabulary and sentence structures for their oral and written communication.
- 3. Demonstrate their understanding of the rules of functional grammar.
- 4. Develop comprehension skills from the known and unknown passages.
- 5. Take an active part in drafting paragraphs, letters, essays, abstracts, précis and reports invarious contexts.
- 6. Acquire basic proficiency in reading and writing modules of English.

UNIT - I

Chapter entitled 'Toasted English' by R.K.Narayan from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: The Concept of Word Formation -The Use of Prefixes and Suffixes -

Acquaintance with Prefixes and Suffixes from Foreign Languages to form

Derivatives - Synonyms and Antonyms

Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions.

Reading: Reading and Its Importance- Techniques for Effective Reading.

Writing: Sentence Structures -Use of Phrases and Clauses in Sentences- Importance of

Proper Punctuation- Techniques for Writing precisely – Paragraph Writing – Types, Structures and Features of a Paragraph - Creating Coherence-

Organizing Principles of Paragraphs in Documents.

UNIT - II

Chapter entitled 'Appro JRD' by Sudha Murthy from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Words Often Misspelt - Homophones, Homonyms and Homographs

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun

Agreement and Subject-verb Agreement.

Reading: Sub-Skills of Reading – Skimming and Scanning – Exercises for Practice

Writing: Nature and Style of Writing- Defining /Describing People, Objects, Places and Events

SREYAS INSTITUTE OF ENGINEERING AND TECHNOLOGY

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- Classifying- Providing Examples or Evidence.

UNIT - III

Chapter entitled 'Lessons from Online Learning' by F.Haider Alvi, Deborah Hurst et al from

"English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad. Vocabulary: Words Often Confused - Words from Foreign Languages and their Use in English. Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and

Tenses.

Reading: Sub-Skills of Reading – Intensive Reading and Extensive Reading –

Exercises for Practice.

Writing: Format of a Formal Letter-Writing Formal Letters E.g., Letter of Complaint,

Letter of Requisition, Email Etiquette, Job Application with CV/Resume.

UNIT - IV

Chapter entitled 'Art and Literature' by Abdul Kalam from "English: Language,

Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Standard Abbreviations in English

Grammar: Redundancies and Clichés in Oral and Written Communication.

Reading: Survey, Question, Read, Recite and Review (SQ3R Method) - Exercises for Practice

Writing: Writing Practices- Essay Writing-Writing Introduction and Conclusion -Précis Writing.

UNIT - V

Chapter entitled 'Go, Kiss the World' by Subroto Bagchi from "English: Language,

Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Technical Vocabulary and their Usage

Grammar: Common Errors in English (*Covering all the other aspects of grammar which*

were notcovered in the previous units)

Reading: Reading Comprehension-Exercises for Practice

Writing: Technical Reports- Introduction – Characteristics of a Report – Categories of

Reports Formats- Structure of Reports (Manuscript Format) - Types of Reports

- Writing a Report.

Note: Listening and Speaking Skills which are given under Unit-6 in AICTE Model Curriculum are covered in the syllabus of ELCS Lab Course.

Note: 1. As the syllabus of English given in AICTE Model Curriculum-2018 for B.Tech First Year is Open-ended, besides following the prescribed textbook, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for

SREYAS INSTITUTE OF ENGINEERING AND TECHNOLOGY

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

effective teaching/learning in the class.

Note: 2.Based on the recommendations of NEP2020, teachers are requested to be flexible to adopt Blended Learning in dealing with the course contents. They are advised to teach 40 percent of each topic from the syllabus in blended mode.

TEXT BOOK:

1. "English: Language, Context and Culture" by Orient BlackSwan Pvt. Ltd, Hyderabad. 2022. Print.

- 1. Effective Academic Writing by Liss and Davis (OUP)
- 2. Richards, Jack C. (2022) Interchange Series. Introduction, 1,2,3. Cambridge University Press
- 3. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
- 4. Chaudhuri, Santanu Sinha. (2018). Learn English: A Fun Book of Functional Language, Grammar and Vocabulary. (2nd ed.,). Sage Publications India Pvt. Ltd.
- 5. (2019). Technical Communication. Wiley India Pvt. Ltd.
- 6. Vishwamohan, Aysha. (2013). English for Technical Communication for Engineering Students.Mc Graw-Hill Education India Pvt. Ltd.
- 7. Swan, Michael. (2016). Practical English Usage. Oxford University Press. Fourth Edition.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATA STRUCTURES

B.Tech. I Year II Sem.

 $L \ T \ P \ C$

3 0 0 3

Prerequisites: Programming for Problem Solving

Course Objectives

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and generaltree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues- operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing- linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, B- Trees, B+ Trees, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Splay Trees.

UNIT - IV

Graphs: GraphImplementation Methods. Graph Traversal Methods.

Sorting: Quick Sort, Heap Sort, Merge Sort.

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan AndersonFreed, Universities Press.
- 2. Data Structures using C-A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/PearsonEducation.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan, Cengage Learning.

SREYAS INSTITUTE OF ENGINEERING AND TECHNOLOGY

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

APPLIED PHYSICS LABORATORY

B.Tech. I Year II Sem.

L T P C 0 0 3 1.5

Course Objectives: The objectives of this course for the student to

- 1. Capable of handling instruments related to the Hall effect and photoelectric effect experiments and their measurements.
- 2. Understand the characteristics of various devices such as PN junction diode, Zener diode, BJT, LED, solar cell, lasers and optical fiber and measurement of energy gap and resistivity of semiconductor materials.
- 3. Able to measure the characteristics of dielectric constant of a given material.
- 4. Study the behavior of B-H curve of ferromagnetic materials.
- 5. Understanding the method of least squares fitting.

Course Outcomes: The students will be able to:

- 1. Know the determination of the Planck's constant using Photo electric effect and identify thematerial whether it is n-type or p-type by Hall experiment.
- 2. Appreciate quantum physics in semiconductor devices and optoelectronics.
- 3. Gain the knowledge of applications of dielectric constant.
- 4. Understand the variation of magnetic field and behavior of hysteresis curve.
- 5. Carried out data analysis.

LIST OF EXPERIMENTS:

- 1. Determination of work function and Planck's constant using photoelectric effect.
- 2. Determination of Hall co-efficient and carrier concentration of a given semiconductor.
- 3. Characteristics of series and parallel LCR circuits.
- 4. V-I characteristics of a p-n junction diode and Zener diode
- 5. Input and output characteristics of BJT (CE, CB & CC configurations)
- 6. a) V-I and L-I characteristics of light emitting diode (LED)
 - b) V-I Characteristics of solar cell
- 7. Determination of Energy gap of a semiconductor.
- 8. Determination of the resistivity of semiconductor by two probe method.
- 9. Study B-H curve of a magnetic material.
- 10. Determination of dielectric constant of a given material
- 11. a) Determination of the beam divergence of the given LASER beam
- b) Determination of Acceptance Angle and Numerical Apertureof an optical fiber.
 - 12. Understanding the method of least squares torsional pendulum as an example.

Note: Any 8 experiments are to be performed.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

REFERENCE BOOK:

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

SREYAS INSTITUTE OF ENGINEERING AND TECHNOLOGY

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATA STRUCTURES LAB

B.Tech. I Year II Sem.

L T P C

Prerequisites: A Course on "Programming for problem solving".

Course Objectives:

- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.
- Ability to Implement searching and sorting algorithms

List of Experiments:

4.

1.	Write a program that uses functions to perform the following operations on singly linkedlist.:				
2.	Write a program that uses functions to perform the following operations on				
	doubly linkedlist.:				
	i) Creation	ii) Insertion	iii) Deletion	iv) Traversal	

- 3. Write a program that uses functions to perform the following operations on circular linkedlist.:
 - i) Creation ii) Insertion iii) Deletion iv) Traversal Write a program that implement stack (its operations) using
 - i) Arrays ii) Pointers
- 5. Write a program that implement Queue (its operations) using i) Arrays ii) Pointers
- 6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order
 - i) Quick sort ii) Heap sort iii) Merge sort
- 7. Write a program to implement the tree traversal methods (Recursive and Non Recursive).
- 8. Write a program to implement
 - i) Binary Search tree ii) B Trees iii) B+ Trees iv)
 AVLtrees v) Red Black trees
- 9. Write a program to implement the graph traversal methods.
- 10. Implement a Pattern matching algorithms using Boyer- Moore, Knuth-Morris-Pratt

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan AndersonFreed, Universities Press.
- 2. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, PHI/PearsonEducation.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage Learning.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY

B.Tech. I Year II Sem.

L T P C 0 0 2 1

The English Language and Communication Skills (ELCS) Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:

- ✓ To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- ✓ To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
- ✓ To bring about a consistent accent and intelligibility in students' pronunciation of English by providing an opportunity for practice in speaking
- ✓ To improve the fluency of students in spoken English and neutralize the impact ofdialects.
- ✓ To train students to use language appropriately for public speaking, group discussions and interviews

Course Outcomes: Students will be able to:

- ✓ Understand the nuances of English language through audio- visual experience and groupactivities
- ✓ Neutralise their accent for intelligibility
- ✓ Speak with clarity and confidence which in turn enhances their employability skills

Syllabus: English Language and Communication Skills Lab (ELCS) shall have two parts:

- a. Computer Assisted Language Learning (CALL) Lab
- b. Interactive Communication Skills (ICS) Lab

Listening Skills:

Objectives

- 1. To enable students develop their listening skills so that they may appreciate the role in the LSRWskills approach to language and improve their pronunciation
- 2. To equip students with necessary training in listening, so that they can comprehend the speechof people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Speaking Skills:

Objectives

- 1. To involve students in speaking activities in various contexts
- 2. To enable students express themselves fluently and appropriately in social and professional contexts
- Oral practice
- Describing objects/situations/people
- Role play Individual/Group activities
- Just A Minute (JAM) Sessions

The following course content is prescribed for the **English Language and Communication Skills Lab**.

Exercise - I

CALL Lab:

Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers- Effective
 Listening. Practice: Introduction to Phonetics – Speech Sounds – Vowels and Consonants
 Minimal Pairs-Consonant Clusters- Past Tense Marker and Plural Marker- Testing
 Exercises

ICS Lab:

Understand: Spoken vs. Written language- Formal and Informal English.

Practice: Ice-Breaking Activity and JAM Session- Situational Dialogues – Greetings – Taking Leave – Introducing Oneself and Others.

Exercise – II

CALL Lab:

Understand: Structure of Syllables – Word Stress– Weak Forms and Strong Forms – Stress pattern in sentences – Intonation.

Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms- Stress pattern insentences – Intonation - *Testing Exercises*

ICS Lab:

Understand: Features of Good Conversation – Strategies for Effective Communication.

Practice: Situational Dialogues – Role Play- Expressions in Various Situations – Making Requests and Seeking Permissions - Telephone Etiquette.

Exercise - III CALL Lab:

Understand: Errors in Pronunciation-Neutralising Mother Tongue Interference (MTI).

SREYAS INSTITUTE OF ENGINEERING AND TECHNIOLOGY

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Practice: Common Indian Variants in Pronunciation – Differences between British and American Pronunciation - Testing Exercises

ICS Lab:

Understand: Descriptions- Narrations- Giving Directions and Guidelines – Blog Writing

Practice: Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

Exercise - IV

CALL Lab:

Understand: Listening for General Details.

Practice: Listening Comprehension Tests - Testing Exercises

ICS Lab:

Understand: Public Speaking - Exposure to Structured Talks - Non-verbal

Communication-Presentation Skills.

Practice: Making a Short Speech – Extempore- Making a Presentation.

Exercise - V

CALL Lab:

Understand: Listening for Specific Details.

Practice: Listening Comprehension Tests -Testing Exercises

ICS Lab:

Understand: Group Discussion Practice: Group Discussion

Minimum Requirement of infrastructural facilities for ELCS Lab:

1. Computer Assisted Language Learning (CALL) Lab:

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self- study by students.

System Requirement (Hardware component):

Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

- i) Computers with Suitable Configuration
- ii) High Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab:

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio- visual aids with a Public Address System, a T. V. or LCD, a digital stereo –audio & video system and camcorder etc.

Sreyas Institute of Engineering and Technology An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Source of Material (Master Copy):

• Exercises in Spoken English. Part 1,2,3. CIEFL and Oxford University Press

Note: Teachers are requested to make use of the master copy and get it tailor-made to suit the contents of the syllabus.

Suggested Software:

- Cambridge Advanced Learners' English Dictionary with CD.
- Grammar Made Easy by Darling Kindersley.
- Punctuation Made Easy by Darling Kindersley.
- Oxford Advanced Learner's Compass, 10th Edition.
- English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
- English Pronunciation in Use (Elementary, Intermediate, Advanced) Cambridge UniversityPress.
- English Vocabulary in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS).
- Digital All
- Orell Digital Language Lab (Licensed Version)

- 1. (2022). English Language Communication Skills Lab Manual cum Workbook. CengageLearning India Pvt. Ltd.
- 2. Shobha, KN & Rayen, J. Lourdes. (2019). *Communicative English A workbook*. CambridgeUniversity Press
- 3. Kumar, Sanjay & Lata, Pushp. (2019). *Communication Skills: A Workbook*. Oxford UniversityPress
- 4. Board of Editors. (2016). ELCS Lab Manual: A Workbook for CALL and ICS Lab Activities.
 - Orient Black Swan Pvt. Ltd.
- 5. Mishra, Veerendra et al. (2020). *English Language Skills: A Practical Approach*. CambridgeUniversity Press.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

IT WORKSHOP

B.Tech. I Year II Sem.

L T P C

0 0 2 1

Course Objectives: The IT Workshop for engineers is a training lab course spread over 60 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, PowerPoint and Publisher.

Course Outcomes:

- Perform Hardware troubleshooting
- Understand Hardware components and inter dependencies
- Safeguard computer systems from viruses/worms
- Document/ Presentation preparation
- Perform calculations using spreadsheets

PC Hardware

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructorshould verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

Task1: **Orientation & Connectivity Boot Camp:** Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: **Search Engines & Netiquette:** Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of LaTeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX

and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

- **Task 2: Using LaTeX and Word** to create a project certificate. Features to be covered: Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.
- **Task 3: Creating project** abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
- **Task 4: Creating a Newsletter**: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2 : Calculating GPA - .Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

Powerpoint

Task 1: Students will be working on basic power point utilities and tools which help them create basic powerpoint presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

- 1. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech
- 2. The Complete Computer upgrade and repair book, 3rd edition Cheryl A Schmidt, *WILEYDreamtech*
- 3. Introduction to Information Technology, ITL Education Solutions limited, *Pearson Education*.
- 4. PC Hardware A Handbook Kate J. Chase *PHI* (Microsoft)
- 5. LaTeX Companion Leslie Lamport, *PHI/Pearson*.
- 6. IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinsonand Ken Quamme. *CISCO Press, Pearson Education*.
- 7. IT Essentials PC Hardware and Software Labs and Study Guide Third Edition by Patrick Regan CISCO Press, *Pearson Education*.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENVIRONMENTAL SCIENCE

B.Tech. I Year, II Sem.

L T P C 3 0 0 0

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

Course Outcomes:

• Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT-I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnifications, ecosystem value, services and carrying capacity, Field visits.

UNIT-II

Natural Resources: Classification of Resources: Living and Non-Living resources, **water resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems .**Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT-III

Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Valueofbiodiversity; consumptiveuse, productiveuse, social, ethical, aestheticand optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wild life, man-wild life conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. Global Environmental

IssuesandGlobalEfforts: Climatechangeandimpactsonhumanenvironment. Ozonedepletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-GoI Initiatives.

UNIT-V

REYAS

EnvironmentalPolicy,Legislation&EIA:EnvironmentalProtectionact,LegalaspectsAirAct-1981, Water Act, Forest Act, Wildlife Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baselined at a acquisition. Overview on Impacts of air, water, biological and Socioeconomical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). Towards Sustainable Future: Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human Environmental health, Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXTBOOKS:

- 1 TextbookofEnvironmentalStudiesforUndergraduateCoursesbyErachBharuchaforUnivers ity Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

- 1. Environmental Science: towards a sustainablefuturebyRichardT.Wright.2008PHLLearning Private Ltd. New Delhi.
- 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by DanielB.Botkin & EdwardA.Keller, Wiley INDIA edition.
- 4. Environmental Studies by AnubhaKaushik,4thEdition,Newageinternationalpublishers.
- 5. Textbook of Environmental Science and Technology-Dr.M.AnjiReddy2007,BSPublications.
- 6. Introduction to Environmental Science by Y.Anjaneyulu, BS. Publications.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ANALOG AND DIGITAL ELECTRONICS

B.Tech. II Year I Semester

LT P C 3 0 0 3

Course Objectives:

- To introduce components such as diodes, BJTs and FETs.
- To know the applications of components.
- To give understanding of various types of amplifier circuits
- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand the concepts of combinational logic circuits and sequential circuits.

Course Outcomes: Upon completion of the Course, the students will be able to:

- Know the characteristics of various components.
- Understand the utilization of components.
- Design and analyze small signal amplifier circuits.
- Learn Postulates of Boolean algebra and to minimize combinational functions
- Design and analyze combinational and sequential circuits
- Know about the logic families and realization of logic gates.

UNIT - I

Diodes and Applications: Junction diode characteristics: Open circuited p-n junction, p-n junction as a rectifier, V-I characteristics, effect of temperature, diode resistance, diffusion capacitance, diode switching times, breakdown diodes, Tunnel diodes, photo diode, LED.

Diode Applications - clipping circuits, comparators, Half wave rectifier, Full wave rectifier with capacitor filter.

UNIT - II

BJTs: Transistor characteristics: The junction transistor, transistor as an amplifier, CB, CE, CC configurations, comparison of transistor configurations, the operating point, self-bias or Emitter bias, bias compensation, thermal runaway and stability, transistor at low frequencies, CE amplifier response, gain bandwidth product, Emitter follower, RC coupled amplifier, two cascaded CE and multi stage CE amplifiers.

UNIT - III

FETs and Digital Circuits: FETs: JFET, V-I characteristics, MOSFET, low frequency CS and CD amplifiers, CS and CD amplifiers ,Digital Circuits: Digital (binary) operations of a system, OR gate, AND gate, NOT, EXCLUSIVE OR gate, De Morgan Laws, NAND and NOR DTL gates, modified DTL gates, HTL and TTL gates, output stages, RTL and DCTL, CMOS, Comparison of logic families.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Combinational Logic Circuits: Basic Theorems and Properties of Boolean Algebra, Canonical and Standard Forms, Digital Logic Gates, The Map Method, Product-of-Sums Simplification, Don't-Care Conditions, NAND and NOR Implementation, Exclusive-OR Function, Binary Adder-Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers.

UNIT - V

Sequential Logic Circuits: Sequential Circuits, Storage Elements: Latches and flip flops, Analysis of Clocked Sequential Circuits, State Reduction and Assignment, Shift Registers, Ripple Counters, Synchronous Counters, Random-Access Memory, Read-Only Memory.

TEXTBOOKS:

- 1. Integrated Electronics: Analog and Digital Circuits and Systems, 2/e, Jaccob Millman, Christos Halkias and Chethan D. Parikh, *Tata McGraw-Hill Education*, India, 2010.
- 2. Digital Design, 5/e, Morris Mano and Michael D. Cilette, *Pearson*, 2011.

- 1. Electronic Devices and Circuits, Jimmy J Cathey, Schaum's outline series, 1988.
- 2. Digital Principles, 3/e, Roger L. Tokheim, Schaum's outline series, 1994.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

PYTHON PROGRAMMING

B.Tech. II Year I Sem.

L T P C 3 0 0 3

Prerequisites: A course on "Programming for Problem Solving using C".

Course Objectives:

- Learn Syntax and Semantics and create Functions in Python.
- Handle Strings and Files in Python.
- Understand Lists, Dictionaries and Regular expressions in Python.
- Build Database Applications in Python.
- Construct data visualization by using various Python modules.

Course Outcomes:

- Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
- Demonstrate proficiency in handling Strings and File Systems.
- Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
- Implement exemplary applications related to Databases in Python.
- Implement the concepts of data visualization in Python.

UNIT - I

Python Basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, Unsupported Types

Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions, Related Modules

Sequences - Strings, Lists, and Tuples, Mapping and Set Types

UNIT - II

FILES: File Objects, File Built-in Function, File Built-in Attributes, Standard Files, Command-line Arguments

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management,

*Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, *Creating Exceptions

Modules: Importing Modules, Importing Module Attributes, Module Built-in Functions, Packages

UNIT - III

Regular Expressions: Introduction, Special Symbols and Characters, Res and Python

Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and the Global Interpreter Lock, Thread Module, Threading Module, Related Modules

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Database Programming: Introduction, Python Database Application Programmer's Interface (DB-API), Python- Sqlite Connectivity, Object Relational Managers (ORMs), Related Modules

UNIT - V

Numpy, Pandas, Sklearn,, Matplotlib, Seaborn

TEXT BOOK:

1. Core Python Programming, Wesley J. Chun, Second Edition, Pearson.

- 1. Think Python, Allen Downey, Green Tea Press
- 2. Introduction to Python, Kenneth A. Lambert, Cengage
- 3. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 4. Learning Python, Mark Lutz, O'Really.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

COMPUTER ORIENTED STATISTICAL METHODS

B.Tech. II Year I Sem.

L T P C 3 1 0 4

Pre-requisites: Mathematics courses of first year of study.

Course Objectives: To learn

- The theory of Probability, Probability distributions of single and multiple random variables
- The sampling theory, testing of hypothesis and making statistical inferences
- Stochastic process and Markov chains.

Course outcomes: After learning the contents of this paper the student must be able to

- Apply the concepts of probability and distributions to case studies.
- Formulate and solve problems involving random variables and apply statistical methods for analyzing experimental data.
- Apply concept of estimation and testing of hypothesis to case studies.
- Correlate the concepts of one unit to the concepts in other units.

UNIT - I: Probability

Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Baye's Rule,

Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions.

UNIT - II: Expectation and discrete distributions

Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev's Theorem.

Discrete Probability Distributions: Binomial Distribution, Poisson distribution.

UNIT - III: Continuous and Sampling Distributions: Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Applications of the NormalDistribution, Normal Approximation to the Binomial Distributions.

Fundamental Sampling Distributions: Random Sampling, Some Important Statistics, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, t - Distribution, F- Distribution.

UNIT - IV: Sample Estimation & Tests of Hypotheses :Introduction, Statistical Inference, Classical Methods of Estimation, Single Sample: Estimating themean, standard error of a point estimate, prediction interval. Two sample: Estimating the difference between two means, Single sample: Estimating a proportion, Two samples: Estimating the difference between two proportions, Two samples: Estimating the ratio of two variances.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Statistical Hypotheses: General Concepts, Testing a Statistical Hypothesis, Single sample: Tests concerning a single mean, Two samples: tests on two means, One sample: test on a single proportion. Two samples: tests on two proportions, Two- sample tests concerning variances.

UNIT-V: Stochastic Processes and Markov Chains: Introduction to Stochastic processes-Markov process. Transition Probability, Transition ProbabilityMatrix, First order and Higher order Markov process, n-step transition probabilities, Markov chain, Steady state condition, Markov analysis.

TEXT BOOKS:

- 1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & StatisticsFor Engineers & Scientists, 9th Ed. Pearson Publishers.
- 2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications.
- 3. S.D.Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi.

- 1. T.T. Soong, Fundamentals of Probability and Statistics For Engineers, John Wiley & Sons, Ltd, 2004.
- 2. Sheldon M Ross, Probability and statistics for Engineers and scientists, academic press.
- 3. Miller and Freund's, Probability and Statistics for Engineers, 8th Edition, Pearson Educations.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

COMPUTER ORGANIZATION AND ARCHITECTURE

B.Tech. II Year I Sem.

L T P C

3 0 0 3

Co-requisite: A Course on "Digital Electronics".

Course Objectives

- The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
- It begins with basic organization, design, and programming of a simple digital computer and
- introduces simple register transfer language to specify various computer operations.
- Topics include computer arithmetic, instruction set design, micro programmed control unit,
- pipelining and vector processing, memory organization and I/O systems, and multiprocessors

Course Outcomes

- Understand the basics of instruction sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT - II

Micro programmed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating

– point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache

Memory.

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics. Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor. Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence

TEXT BOOK:

1. Computer System Architecture – M. Morris Mano, Third Edition, Pearson/PHI.

- 1. Computer Organization Carl Hamacher, Zvonks Vranesic, SafeaZaky, V th Edition, McGraw Hill.
- 2. Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI.
- 3. Structured Computer Organization Andrew S. Tanenbaum, 4 th Edition, PHI/Pearson.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATABASE MANAGEMENT SYSTEMS

B.Tech. II Year I Sem.

L TP C 3 0 0 3

Prerequisites: A course on "Data Structures".

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transactioncontrol, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/alteringtables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM),

B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

- 1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition
- 2. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7thEdition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

PYTHON PROGRAMMING LABORATORY

B.Tech. II Year I Sem.

L T P C 0 0 3 1.5

Course Objectives:

- To install and run the Python interpreter
- To learn control structures.
- To Understand Lists, Dictionaries in python
- To Handle Strings and Files in Python

Course Outcomes: After completion of the course, the student should be able to

- Develop the application specific codes using python.
- Understand Strings, Lists, Tuples and Dictionaries in Python
- Verify programs using modular approach, file I/O, Python standard library
- Implement Digital Systems using Python

Note: The lab experiments will be like the following experiment examples

Week -1:

- 1. i) Use a web browser to go to the Python website http://python.org. This page contains informationabout Python and links to Python-related pages, and it gives you the ability to search the Python documentation.
 - ii) Start the Python interpreter and type help() to start the online help utility.
- 2. Start a Python interpreter and use it as a Calculator.3.
 - i) Write a program to calculate compound interest when principal, rate and number of periods are given.
 - ii) Given coordinates (x1, y1), (x2, y2) find the distance between two points
- 4. Read name, address, email and phone number of a person through keyboard and print the details.

Week - 2:

- 1. Print the below triangle using for
 - loop.5
 - 44
 - 333
 - 2222
 - 11111
- 2. Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder)
- 3. Python Program to Print the Fibonacci sequence using while loop
- 4. Python program to print all prime numbers in a given interval (use break)

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Week - 3:

- 1. i) Write a program to convert a list and tuple into arrays.
 - ii) Write a program to find common values between two arrays.
- 2. Write a function called gcd that takes parameters a and b and returns their greatest common divisor.
- 3. Write a function called palindrome that takes a string argument and returnsTrue if it is a palindrome and False otherwise. Remember that you can use the built-in function len to check the length of a string.

Week - 4:

- 1. Write a function called is_sorted that takes a list as a parameter and returns True if the list is sorted in ascending order and False otherwise.
 - i). Write a function called has_duplicates that takes a list and returns True if there is any element that appears more than once. It should not modify the original list. Write a function called remove_duplicates that takes a list and returns a new list with only the unique elements from the original. Hint: they don't have to be in the same order.
 - ii). The wordlist I provided, words.txt, doesn't contain single letter words. So you might want to add"I", "a", and the empty string.
 - iii). Write a python code to read dictionary values from the user. Construct a function to invert its content. i.e., keys should be values and values should be keys.
- 2. i) Add a comma between the characters. If the given word is 'Apple', it should become 'A,p,p,l,e'
 - ii) Remove the given word in all the places in a string?iii) Write a function that takes a sentence as an input parameter and replaces the first letter
 - iii) Write a function that takes a sentence as an input parameter and replaces the first letter of every word with the corresponding upper case letter and the rest of the letters in the word by corresponding letters in lower case without using a built-in function?
- 3. Writes a recursive function that generates all binary strings of n-bit length

Week - 5:

- 1. i) Write a python program that defines a matrix and prints
 - ii) Write a python program to perform addition of two square matrices
 - iii) Write a python program to perform multiplication of two square matrices
- 2. How do you make a module? Give an example of construction of a module using different geometrical shapes and operations on them as its functions.
- 3. Use the structure of exception handling all general purpose exceptions.

Week-6:

- 1. a. Write a function called draw_rectangle that takes a Canvas and a Rectangle as arguments anddraws a representation of the Rectangle on the Canvas.
 - b. Add an attribute named color to your Rectangle objects and modify draw_rectangle so that ituses the color attribute as the fill color.
 - c. Write a function called draw_point that takes a Canvas and a Point as arguments and draws are presentation of the Point on the Canvas.
 - d. Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw_circle that draws circles on the canvas.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 2. Write a Python program to demonstrate the usage of Method Resolution Order (MRO) in multiple levels of Inheritances.
- 3. Write a python code to read a phone number and email-id from the user and validate it forcorrectness.

Week-7

- 1. Write a Python code to merge two given file contents into a third file.
- 2. Write a Python code to open a given file and construct a function to check for given words present init and display on found.
- 3. Write a Python code to Read text from a text file, find the word with most number of occurrences
- 4. Write a function that reads a file *file1* and displays the number of words, number of vowels, blankspaces, lower case letters and uppercase letters.

Week - 8:

- 1. Import numpy, Plotpy and Scipy and explore their functionalities.
- 2. a) Install NumPy package with pip and explore it.
- 3. Write a program to implement Digital Logic Gates AND, OR, NOT, EX-OR
- 4. Write a program to implement Half Adder, Full Adder, and Parallel Adder
- 5. Write a GUI program to create a window wizard having two text labels, two text fields and two buttons as Submit and Reset.

TEXT BOOKS:

- 1. Supercharged Python: Take your code to the next level, Overland
- 2. Learning Python, Mark Lutz, O'reilly

- 1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 2. Python Programming A Modular Approach with Graphics, Database, Mobile, and WebApplications, Sheetal Taneja, Naveen Kumar, Pearson
- 3. Programming with Python, A User's Book, Michael Dawson, Cengage Learning, India Edition
- 4. Think Python, Allen Downey, Green Tea Press
- 5. Core Python Programming, W. Chun, Pearson
- 6. Introduction to Python, Kenneth A. Lambert, Cengage

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATABASE MANAGEMENT SYSTEMS LAB

B.Tech. II Year I Sem.

L T P C 0 0 3 1.5

Co-requisites: "Database Management Systems"

Course Objectives:

- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes:

- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:

- 1. Concept design with E-R Model
- 2. Relational Model
- 3. Normalization
- 4. Practicing DDL commands
- 5. Practicing DML commands
- 6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.)
 - B. Nested, Correlated subqueries
- 7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
- 8. Triggers (Creation of insert trigger, delete trigger, update trigger)
- 9. Procedures
- 10. Usage of Cursors

TEXT BOOKS:

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill,3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7thEdition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C.J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

GENDER SENSITIZATION LAB

B.Tech. II Year I Sem.

L T P C 0 0 2 0

COURSE DESCRIPTION

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions aboutsex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes

- > Students will have developed a better understanding of important issues related to gender in contemporary India.
- > Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- > Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- > Students will acquire insight into the gendered division of labor and its relation to politics and economics.
- ➤ Men and women students and professio 62 ls will be better equipped to work and live together as equals.
- > Students will develop a sense of appreciation of women in all walks of life.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

> Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT-I: UNDERSTANDING GENDER

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudestowards Gender-Construction of Gender-Socialization: Making Women, Making Men

- Preparing for Womanhood. Growing up Male. First lessons in Caste.

UNIT – II: GENDER ROLES AND RELATIONS

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles- Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences- Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT - III: GENDER AND LABOUR

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work.

-Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

UNIT - IV: GENDER - BASED VIOLENCE

The Concept of Violence-Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No!-Sexual Harassment, not Eveteasing-Coping with Everyday Harassment-Further Reading: "Chupulu".

Domestic Violence: Speaking OutIs Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

UNIT – V: GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-The Brave Heart.

<u>Note</u>: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

➤ Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender".

ESSENTIAL READING: The Textbook, "*Towards a World of Equals: A Bilingual Textbook on Gender*" written by A.Suneetha, Uma Bhrugubanda, DuggiralaVasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu **published by Telugu Akademi, Telangana Government in 2015.**

ASSESSMENT AND GRADING:

• Discussion & Classroom Participation: 20%

• Project/Assignment: 30%

• End Term Exam: 50%

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SKILL DEVELOPMENT COURSE (DATA VISUALIZATION - R PROGRAMMING/POWER BI)

B.Tech, II Year I Sem.

L T P C 0 0 2 1

Course Objectives:

- Effective use of Business Intelligence (BI) technology (Tableau) to apply data visualization
- To discern patterns and relationships in the data.
- To build Dashboard applications.
- To communicate the results clearly and concisely.
- To be able to work with different formats of data sets.

Course Outcomes: At the end of the course a student should be able to

- Understand How to import data into Tableau.
- Understand Tableau concepts of Dimensions and Measures.
- Develop Programs and understand how to map Visual Layouts and Graphical Properties.
- Create a Dashboard that links multiple visualizations.
- Use graphical user interfaces to create Frames for providing solutions to real world
- problems.

Lab Problems:

- 1. Understanding Data, What is data, where to find data, Foundations for building Data Visualizations, Creating Your First visualization?
- 2. Getting started with Tableau Software using Data file formats, connecting your Data to Tableau, creating basic charts(line, bar charts, Tree maps), Using the Show me panel.
- 3. Tableau Calculations, Overview of SUM, AVR, and Aggregate features, Creating custom calculations and fields.
- 4. Applying new data calculations to your visualizations, Formatting Visualizations, Formatting Toolsand Menus, Formatting specific parts of the view.
- 5. Editing and Formatting Axes, Manipulating Data in Tableau data, Pivoting Tableau data.
- 6. Structuring your data, Sorting and filtering Tableau data, Pivoting Tableau data.
- 7. Advanced Visualization Tools: Using Filters, Using the Detail panel, using the Size panels, customizing filters, Using and Customizing tooltips, Formatting your data with colors.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 8. Creating Dashboards & Dashboards & Dashboard and Story, Design for different displays, adding interactivity to your Dashboard, Distributing & Dashboard, Dash
- 9. Tableau file types, publishing to Tableau Online, Sharing your visualizations, printing, and Exporting.
- 10. Creating custom charts, cyclical data and circular area charts, Dual Axis charts.

- 1. Microsoft Power BI cookbook, Brett Powell, 2nd edition.
- 2. R Programming for Data Science by Roger D. Peng (References)
- 3. The Art of R Programming by Norman Matloff Cengage Learning India.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

HUMAN VALUES AND ETHICS

B.Tech. II Year I Sem.

L T P C

Prerequisites: This course has no specific prerequisite and co-requisite.

Course Objectives:

- To help the students appreciate the essential complementarily between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity, which are the core aspirations of all human beings
- To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of Existence. Such a holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way
- To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually enriching interaction with Nature

Course Outcomes: At the end of the course, the student will be able to

- Analyze the process of self-exploration, right understanding, relationships, natural acceptance for achieving ultimate happiness To design and work with databases using Java
- Examine human being as a co-existence of self 'I' and the material 'Body
- Correlate the universal harmonious order in society, undivided society and from family to world family.
- Interpret the harmony in nature, holistic perception at all levels of existence.
- Analyze professional competence for augmenting universal human order, ethical human conduct for acceptance of human values.

UNIT - I

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education: Purpose and motivation for the course, recapitulation from Universal Human Values-1; Self-Exploration what is it? –its content and process; 'Natural Acceptance' and Experiential Validation – as the process for self-exploration; Continuous Happiness and Prosperity- A look at basic human aspiration; Right Understanding, Relationship and Physical facility; Understanding Happiness and Prosperity correctly; Method to fulfill the above Human Aspirations; Understanding and living in harmony at different levels.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - II

Understanding harmony in the Human Being- Harmony in Myself!: Understand- ing human being as a co-existence of the sentient 'I' and the material 'Body'; Understanding the needs of Self ('I') and 'Body'-happiness and physical facility; Understanding the body as an instrument of 'I"; Understanding the characteristics and activities of 'I' and harmony 'I"; Understanding the harmony of 'I' with the body: Sanyam and health; Correct appraisal of physical needs, meaning of prosperity in detail; Programs to ensure Sanyam and Health.

UNIT - III

Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship: Understanding values in human-human relationship; meaning of justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness: Trust and Respect as the foundational values of relationship; Understanding the meaning of Trust; difference between intention and competence; Understanding the meaning of respect, Difference between respect and differentiation; the other salient values in relationship; Understanding harmony in the society; Visualizing a universal harmonious order in society.

UNIT - IV

Understanding Harmony in the Nature and Existence - Whole existence as Co- existence: Understanding the harmony in the Nature; Interconnectedness and mutual ful- fillment among the four orders of nature-recyclability and self-regulation in nature; Understanding Existence as Co-existence of mutually interacting units in all-pervasive space; Holistic perception of harmony at all levels of existence.

UNIT - V

Implications of the above Holistic Understanding of Harmony on Professional **Ethics:** Natural Acceptance of Human Values; Definitiveness of Ethical Human Conduct; Basics for Humanistic Education, Humanistic Constitution and Humanistic Universal Order; Competence in professional ethics; Case studies of typical holistic technologies, managementmodels and productive systems; Strategy for transition from the present state to Universal Human Order.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

1. Human values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, 1st Edition,Excel Books, New Delhi, 2010

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999
- 2. Human Values, A. N. Tripathi, 3rd Edition New age Intl. Publishers, New Delhi, 2019
- 3. The Story of My Experiments with Truth- by Mohandas Karamchand Gandhi, 1st Edi-tion, Fingerprint Publishing, 2009

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DISCRETE MATHEMATICS

B.Tech. II Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- Introduces elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, algebraic structures, elementary graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes:

- Understand and construct precise mathematical proofs
- Apply logic and set theory to formulate precise statements
- Analyze and solve counting problems on finite and discrete structures
- Describe and manipulate sequences
- Apply graph theory in solving computing problems

UNIT - I

Mathematical logic: Introduction, Statements and Notation, Connectives, Normal Forms, Theory of Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus.

UNIT - II

Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions.

UNIT - III

Algebraic Structures: Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as PartiallyOrdered Sets, Boolean Algebra.

UNIT - IV

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutation with Constrained Repetitions, Binomial Coefficient, The Binomial and Multinomial Theorems, The Principle of Exclusion.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Graph Theory: Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multi-graphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem.

TEXT BOOKS:

- 1. Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
- 2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe l. Mott, Abraham Kandel, Teodore P. Baker, Prentis Hall of India, 2nd ed.

- 1. Discrete and Combinatorial Mathematics an applied introduction: Ralph.P. Grimald, Pearsoneducation, 5th edition.
- 2. Discrete Mathematical Structures: Thomas Kosy, Tata McGraw Hill publishing co.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

B.Tech. II Year II Sem.

L T P C 3 0 0 3

Course Objective: To learn the basic business types, impact of the economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

Unit – I: Introduction to Business and Economics

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply and Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economics, Multidisciplinary nature of Business Economics.

UNIT - II: Demand and Supply Analysis

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function and Law of Supply.

UNIT - III: Production, Cost, Market Structures & Pricing

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition. **Pricing:** Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV: Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts (Simple Problems).

UNIT - V: Financial Ratios Analysis: Concept of Ratio Analysis, Importance and Types of Ratios, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios – Analysis and Interpretation (simple problems).

TEXT BOOKS:

- 1. D. D. Chaturvedi, S. L. Gupta, Business Economics Theory and Applications, InternationalBook House Pvt. Ltd. 2013.
- 2. Dhanesh K Khatri, Financial Accounting, Tata Mc Graw Hill, 2011.
- 3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata McGraw Hill Education Pvt. Ltd. 2012.

- 1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
- 2. S. N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

OPERATING SYSTEMS

B.Tech. II Year II Sem.

L T P C 3 0 0 3

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Computer Organization and Architecture".

Course Objectives:

- Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Will be able to control access to a computer and the files that may be shared
- Demonstrate the knowledge of the components of computers and their respective roles incomputing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

UNIT - I

Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Timeshared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls

Process - Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads

UNIT - II

CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling. System call interface for process management-fork, exit, wait, waitpid, exec

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - III

Process Management and Synchronization - The Critical Section Problem, SynchronizationHardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors **Interprocess Communication Mechanisms:** IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV

Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms.

UNIT - V

File System Interface and Operations -Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, lseek, stat, ioctl system calls.

TEXT BOOKS:

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
- 2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

- 1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach- Crowley, TMH.
- 3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
- 4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
- 5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. II Year II Sem.

L T P C 3 0 0 3

Course Objectives

- To Understand the basic object-oriented programming concepts and apply them in problemsolving.
- To Illustrate inheritance concepts for reusing the program.
- To Demonstrate multitasking by using multiple threads and event handling
- To Develop data-centric applications using JDBC.
- To Understand the basics of java console and GUI based programming

Course Outcomes

- Demonstrate the behavior of programs involving the basic programming constructs like controlstructures, constructors, string handling and garbage collection.
- Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by using extend and implement keywords
- Use multithreading concepts to develop inter process communication.
- Understand the process of graphical user interface design and implementation using AWT orswings.
- Develop applets that interact abundantly with the client environment and deploy on the server.

UNIT - I

Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and lifetime of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT - II

Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining,

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III

Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception subclasses. String handling, Exploring java.util. Differences between multithreading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads. Enumerations, autoboxing, annotations, generics.

UNIT - IV

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, checkbox groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT - V

Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets. Swing – Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing- JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons – The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.

TEXT BOOKS:

- 1. Java the complete reference, 7th edition, Herbert schildt, TMH.
- 2. Understanding OOP with Java, updated edition, T. Budd, Pearson education.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 1. An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch, John wiley& sons.
- 2. An Introduction to OOP, third edition, T. Budd, Pearson education.
- 3. Introduction to Java programming, Y. Daniel Liang, Pearson education.
- 4. An introduction to Java programming and object-oriented application development, R.A.Johnson-Thomson.
- 5. Core Java 2, Vol 1, Fundamentals, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education.
- 6. Core Java 2, Vol 2, Advanced Features, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education
- 7. Object Oriented Programming with Java, R.Buyya, S.T.Selvi, X.Chu, TMH.
- 8. Java and Object Orientation, an introduction, John Hunt, second edition, Springer. 9. Maurach's Beginning Java2 JDK 5, SPD.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SOFTWARE ENGINEERING

B.Tech. II Year II Sem.

L T P C

Course Objectives

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

- Ability to translate end-user requirements into system and software requirements, using e.g. UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simpletesting report

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths. **A Generic view of process**: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI). **Process models**: The waterfall model, Spiral model and Agile methodology

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model. Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequencediagrams, collaboration diagrams, use case diagrams, component diagrams.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging.

Metrics for Process and Products: Software measurement, metrics for software quality.

UNIT - V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM. **Quality Management:** Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, softwarereliability, the ISO 9000 quality standards.

TEXT BOOKS:

- 1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw HillInternational Edition.
- 2. Software Engineering- Sommerville, 7th edition, Pearson Education.

- 1. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.
- 2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
- 3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-HillCompanies.
- 4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

OPERATING SYSTEMS LAB

B.Tech. II Year II Sem.

L T P C

Prerequisites: A course on "Programming for Problem Solving", A course on "Computer Organization and Architecture".

Co-requisite: A course on "Operating Systems".

Course Objectives:

- To provide an understanding of the design aspects of operating system concepts throughsimulation
- Introduce basic Unix commands, system call interface for process management, interprocesscommunication and I/O in Unix

Course Outcomes:

- Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
- Able to implement C programs using Unix system calls

List of Experiments:

- 1. Write C programs to simulate the following CPU Scheduling algorithms a) FCFS b) SJF
- c) RoundRobin d) priority
- 2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
- 3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
- 4. Write a C program to implement the Producer Consumer problem using semaphores using UNIX/LINUX system calls.
- 5. Write C programs to illustrate the following IPC mechanisms a) Pipes b) FIFOs c) Message Queues d) Shared Memory
- 6. Write C programs to simulate the following memory management techniques a) Paging b)Segmentation
- 7. Write C programs to simulate Page replacement policies a) FCFS b) LRU c) Optimal

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley
- 2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

- 1. Operating Systems Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
- 4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
- 5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB

B.Tech. II Year II Sem.

L T P C 0 0 2 1

Course Objectives:

- To write programs using abstract classes.
- To write programs for solving real world problems using the java collection framework.
- To write multithreaded programs.
- To write GUI programs using swing controls in Java.
- To introduce java compiler and eclipse platform.
- To impart hands-on experience with java programming.

Course Outcomes:

- Able to write programs for solving real world problems using the java collection framework.
- Able to write programs using abstract classes.
- Able to write multithreaded programs.
- Able to write GUI programs using swing controls in Java.

Note:

- 1. Use LINUX and MySQL for the Lab Experiments. Though not mandatory, encourage the use of the Eclipse platform.
- 2. The list suggests the minimum program set. Hence, the concerned staff is requested to addmore problems to the list as needed.

List of Experiments:

- 1. Use Eclipse or Net bean platform and acquaint yourself with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
- 2. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
- 3. A) Develop an applet in Java that displays a simple message.
- B) Develop an applet in Java that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named "Compute" is clicked.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 4. Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num 2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the program would throw an Arithmetic Exception. Display the exception in a message dialog box.
- 5. Write a Java program that implements a multi-thread application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.
- 6. Write a Java program for the following: Create a doubly linked list of elements.

Delete a given element from the above list. Display the contents of the list after deletion.

- 7. Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with "Stop" or "Ready" or "Go" should appear above the buttons in the selected color. Initially, there is no message shown.
- 8. Write a Java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle, and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the methodprint Area () that prints the area of the given shape.
- 9. Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, andthe remaining lines correspond to rows in the table. The elements are separated by commas.

Write a java program to display the table using Labels in Grid Layout.

10. Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired (Use Adapter classes).

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 11. Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (\t). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint:use hash tables).
- 12. Write a Java program that correctly implements the producer consumer problem using the concept of inter thread communication.
- 13. Write a Java program to list all the files in a directory including the files present in all its subdirectories.

REFERENCE BOOKS:

- 1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition Pearson education.
- 2. Thinking in Java, Bruce Eckel, Pearson Education.
- Java Programming, D. S. Malik and P. S. Nair, Cengage Learning.
 Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell, Pearson

90

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

CONSTITUTION OF INDIA

B.Tech. II Year II Sem.

L T P C

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rightsperspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before thearrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP]under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
- Discuss the passage of the Hindu Code Bill of 1956.
- Unit 1 History of Making of the Indian Constitution- History of Drafting Committee.
- **Unit 2** Philosophy of the Indian Constitution- Preamble Salient Features
- Unit 3 Contours of Constitutional Rights & Duties Fundamental Rights
 - Right to Equality
 - Right to Freedom
 - Right against Exploitation
 - Right to Freedom of Religion
 - Cultural and Educational Rights
 - Right to Constitutional Remedies
 - Directive Principles of State Policy
 - Fundamental Duties.
- **Unit 4** Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Unit - 5 Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit - 6 Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Suggested Reading:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SKILL DEVELOPMENT COURSE (NODE JS/ REACT JS/ DJANGO)

B.Tech. II Year II Sem.

L T P C 0 0 2 1

Prerequisites: Object Oriented Programming through Java, HTML Basics Course Objectives:

- To implement the static web pages using HTML and do client side validation using JavaScript.
- To design and work with databases using Java
- To develop an end to end application using java full stack.
- To introduce Node JS implementation for server side programming.
- To experiment with single page application development using React.

Course Outcomes: At the end of the course, the student will be able to,

- Build a custom website with HTML, CSS, and Bootstrap and little JavaScript.
- Demonstrate Advanced features of JavaScript and learn about JDBC
- Develop Server side implementation using Java technologies like
- Develop the server side implementation using Node JS.
- Design a Single Page Application using React.

Exercises:

- 1. Build a responsive web application for shopping cart with registration, login, catalog and cart pages using CSS3 features, flex and grid.
- 2. Make the above web application responsive web application using Bootstrap framework.
- 3. Use JavaScript for doing client side validation of the pages implemented in experiment 1 and experiment 2.
- 4. Explore the features of ES6 like arrow functions, callbacks, promises, async/await. Implement an application for reading the weather information from openweathermap.org and display the information in the form of a graph on the web page.
- 5. Develop a java stand alone application that connects with the database (Oracle / mySql) and perform the CRUD operation on the database tables.
- 6. Create an xml for the bookstore. Validate the same using both DTD and XSD.
- 7. Design a controller with servlet that provides the interaction with application developed inexperiment 1 and the database created in experiment 5.
- 8. Maintaining the transactional history of any user is very important. Explore the various sessiontracking mechanism (Cookies, HTTP Session)
- 9. Create a custom server using http module and explore the other modules of Node JS like OS,path, event.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 10. Develop an express web application that can interact with REST API to perform CRUDoperations on student data. (Use Postman)
- 11. For the above application create authorized end points using JWT (JSON Web Token).
- 12. Create a react application for the student management system having registration, login, contact, about pages and implement routing to navigate through these pages.
- 13. Create a service in react that fetches the weather information from openweathermap.org and the display the current and historical weather information using graphical representation using chart.js
- 14. Create a TODO application in react with necessary components and deploy it into github.

- 1. Jon Duckett, Beginning HTML, XHTML, CSS, and JavaScript, Wrox Publications, 2010
- 2. Bryan Basham, Kathy Sierra and Bert Bates, Head First Servlets and JSP, O'Reilly Media, 2ndEdition, 2008.
- 3. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, A Press.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DESIGN AND ANALYSIS OF ALGORITHMS

B.Tech. III Year I Sem.

LTPC

3 0 0 3

Prerequisites:

1. A course on "Computer Programming and Data Structures".

A course on "Advanced Data Structures

Course Objectives:

- Introduces the notations for analysis of the performance of algorithms and the data structure of disjoint sets.
- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate
- Describes how to evaluate and compare different algorithms using worst-, average-, and best case analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:

- Analyze the performance of algorithms
- Choose appropriate data structures and algorithm design methods for a specified application
- Understand the choice of data structures and the algorithm design methods.

UNIT - I

Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT - II

Disjoint Sets: Disjoint set operations, union and find algorithms, Priority Queue-Heaps, Heapsort Backtracking: General method, applications, n-queen's problem, sum of subsets problem, graph Coloring, Hamiltonian cycles.

UNIT – III

Dynamic Programming: General method, applications- Optimal binary search tree, 0/1 knapsack problem, All pairs shortest path problem, Traveling salesperson problem, Reliability design.

UNIT - IV

Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Basic Traversal and Search Techniques: Techniques for Binary Trees, Techniques for Graphs, Connected components, Biconnected components.

UNIT - V

Branch and Bound: General method, applications - Traveling salesperson problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP-Hard and NP-Complete classes, Cook's theorem.

TEXT BOOK:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University press, 1998.

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- 2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

COMPUTER NETWORKS

B.Tech. III Year I Sem.

LTPC 3 00 3

Prerequisites:

- 1. A course on "Programming for problem solving"
- 2. A course on "Data Structures"

Course Objectives:

- The objective of the course is to equip the students with a general overview of the concepts and fundamentals of computer networks.
- Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers.

Course Outcomes:

- Gain the knowledge of the basic computer network technology.
- Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model.
- Obtain the skills of subnetting and routing mechanisms.
- Familiarity with the essential protocols of computer networks, and how they can be applied in network design and implementation.

UNIT - I

Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet.

Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless Transmission.

Data link layer: Design issues, framing, Error detection and correction.

UNIT - II

Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel.

Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols.

Medium Access sublayer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

UNIT - III

Network Layer: Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

UNIT - V

Application Layer –Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TEXT BOOK:

1. Computer Networks -- Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI

- 1. An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education
- 2. Data Communications and Networking Behrouz A. Forouzan. Third Edition TMH.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

WEB TECHNOLOGIES

B.Tech. III Year I Sem.

LTPC 3 0 0 3

Course Objectives:

- To introduce PHP language for server-side scripting
- To introduce XML and processing of XML Data with Java
- To introduce Server-side programming with Java Servlets and JSP
- To introduce Client-side scripting with Javascript and AJAX.

Course Outcomes:

- gain knowledge of client-side scripting, validation of forms and AJAX programming
- understand server-side scripting with PHP language
- understand what is XML and how to parse and use XML Data with Java
- To introduce Server-side programming with Java Servlets and JSP

UNIT-I

Introduction to PHP: Declaring variables, data types, arrays, strings, operators, expressions, control structures, functions, Reading data from web form controls like text boxes, radio buttons, lists etc., Handling File Uploads. Connecting to database (MySQL as reference), executing simple queries, handling results, Handling sessions and cookies.

File Handling in PHP: File operations like opening, closing, reading, writing, appending, deleting etc. on text and binary files, listing directories.

UNIT-II

HTML Common tags- List, Tables, images, forms, Frames; Cascading Style sheets; **XML**: Introduction to XML, Defining XML tags, their attributes and values, Document Type Definition, XML Schemes, Document Object Model, XHTML Parsing XML Data – DOM and SAX Parsers in java.

UNIT - III

Introduction to Servlets: Common Gateway Interface (CGt), Life cycle of a Servlet, deploying a servlet, The Servlet API, Reading Servlet parameters, Reading Initialization parameters, Handling Http Request & Responses, Using Cookies and Sessions, connecting to a database using JDBC.

UNIT-IV

Introduction to JSP: The Anatomy of a JSP Page, JSP Processing, Declarations, Directives, Expressions, Code Snippets, implicit objects, Using Beans in JSP Pages, Using Cookies and session for session tracking, connecting to database in JSP.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Client-side Scripting: Introduction to Javascript, Javascript language – declaring variables, scope of variables, functions. event handlers (onclick, onsubmit etc.), Document Object Model, Form validation.

TEXT BOOKS:

- 1. Web Technologies, Uttam K Roy, Oxford University Press
- 2. The Complete Reference PHP Steven Holzner, Tata McGraw-Hill

- 1. Web Programming, building internet applications, Chris Bates 2" edition, Wiley Dreamtech
- 2. Java Server Pages —Hans Bergsten, SPD O'Reilly,
- 3. Java Script, D.Flanagan
- 4. Beginning Web Programming-Jon Duckett WROX.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ARTIFICIAL INTELLIGENCE (Professional Elective – I)

B.Tech. III Year I Sem.

LTPC 3003

Prerequisites:

1. Programming for problem solving, Data Structures.

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning
- To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- Understand search strategies and intelligent agents
- Understand different adversarial search techniques
- Apply propositional logic, predicate logic for knowledge representation
- Apply AI techniques to solve problems of game playing, and machine learning.

UNIT - I

Introduction to AI, Intelligent Agents, problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces.

UNIT - II

Problem Solving by Search-II and Propositional Logic

Adversarial Search: Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-Time Decisions. Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems. Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

UNIT – III

Logic and Knowledge Representation

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic.

Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Knowledge Representation: Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

Classical Planning: Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

UNIT - V

Uncertain knowledge and Learning Uncertainty: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

TEXT BOOK:

1. Artificial Intelligence: A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

- 1. Artificial Intelligence, 3rd Edn, E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henry Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ADVANCED COMPUTER ARCHITECTURE (Professional Elective – I)

B.Tech. III Year I Sem.

LTPC

3003

Prerequisites: Computer Organization

Course Objectives:

- To impart the concepts and principles of parallel and advanced computer architectures.
- To develop the design techniques of Scalable and multithreaded Architectures.
- To Apply the concepts and techniques of parallel and advanced computer architectures to design modern computer systems

Course Outcomes:

- Computational models and Computer Architectures.
- Concepts of parallel computer models.
- Scalable Architectures, Pipelining, Superscalar processors

UNIT - I

Theory of Parallelism, Parallel computer models, The State of Computing, Multiprocessors and Multicomputers, Multivector and SIMD Computers, PRAM and VLSI models, Architectural development tracks, Program and network properties, Conditions of parallelism, Program partitioning and Scheduling, Program flow Mechanisms, System interconnect Architectures.

UNIT - II

Principles of Scalable performance, Performance metrics and measures, Parallel Processing applications, Speed up performance laws, Scalability Analysis and Approaches, Hardware Technologies, Processes and Memory Hierarchy, Advanced Processor Technology, Superscalar and Vector Processors

UNIT - III

Shared-Memory Organizations, Sequential and weak consistency models, Pipelining and superscalar techniques, Linear Pipeline Processors, Non-Linear Pipeline Processors, Instruction Pipeline design, Arithmetic pipeline design, superscalar pipeline design.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Parallel and Scalable Architectures, Multiprocessors and Multicomputers, Multiprocessor system interconnects, cache coherence and synchronization mechanism, Three Generations of Multicomputers, Message-passing Mechanisms, Multivetor and SIMD computers.

UNIT - V

Vector Processing Principles, Multivector Multiprocessors, Compound Vector processing, SIMD computer Organizations, The connection machine CM-5.

TEXT BOOK

1. Advanced Computer Architecture, Kai Hwang, 2nd Edition, Tata McGraw Hill Publishers.

- 1. Computer Architecture, J.L. Hennessy and D.A. Patterson, 4th Edition, ELSEVIER.
- 2. Advanced Computer Architectures, S.G.Shiva, Special Indian edition, CRC, Taylor &Francis.
- 3. Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press, Taylor & Francis Group.
- 4. Advanced Computer Architecture, D. Sima, T. Fountain, P. Kacsuk, Pearson education.
- 5. Computer Architecture, B. Parhami, Oxford Univ. Press.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATA ANALYTICS (Professional Elective – I)

B.Tech. III Year I Sem.

LTPC 3 0 0 3

Prerequisites

- 1. A course on "Database Management Systems".
- 2. Knowledge of probability and statistics.

Course Objectives:

- To explore the fundamental concepts of data analytics.
- To learn the principles and methods of statistical analysis
- Discover interesting patterns, analyze supervised and unsupervised models and estimate the accuracy of the algorithms.
- To understand the various search methods and visualization techniques.

Course Outcomes: After completion of this course students will be able to

- Understand the impact of data analytics for business decisions and strategy
- Carry out data analysis/statistical analysis
- To carry out standard data visualization and formal inference procedures
- Design Data Architecture
- Understand various Data Sources

UNIT - I

Data Management: Design Data Architecture and manage the data for analysis, understand various sources of Data like Sensors/Signals/GPS etc. Data Management, Data Quality(noise, outliers, missing values, duplicate data) and Data Processing & Processing.

UNIT - II

Data Analytics: Introduction to Analytics, Introduction to Tools and Environment, Application of Modeling in Business, Databases & Types of Data and Variables, Data Modeling Techniques, Missing Imputations etc. Need for Business Modeling.

UNIT - III

Regression – Concepts, Blue property assumptions, Least Square Estimation, Variable Rationalization, and Model Building etc.

Logistic Regression: Model Theory, Model fit Statistics, Model Construction, Analytics applications to various Business Domains etc.

UNIT-IV

Object Segmentation: Regression Vs Segmentation – Supervised and Unsupervised Learning, Tree Building – Regression, Classification, Overfitting, Pruning and Complexity, Multiple Decision Trees etc. Time Series Methods: Arima, Measures of Forecast Accuracy, STL approach, Extract features from generated model as Height, Average Energy etc and Analyze for prediction

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Data Visualization: Pixel-Oriented Visualization Techniques, Geometric Projection Visualization Techniques, Icon-Based Visualization Techniques, Hierarchical Visualization Techniques, Visualizing Complex Data and Relations.

TEXT BOOKS:

- 1. Student's Handbook for Associate Analytics II, III.
- 2. Data Mining Concepts and Techniques, Han, Kamber, 3rd Edition, Morgan Kaufmann Publishers.

- 1. Introduction to Data Mining, Tan, Steinbach and Kumar, Addision Wisley, 2006.
- 2. Data Mining Analysis and Concepts, M. Zaki and W. Meira
- 3. Mining of Massive Datasets, Jure Leskovec Stanford Univ. Anand Rajaraman Milliway Labs Jeffrey D Ullman Stanford Univ.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

IMAGE PROCESSING (Professional Elective – I)

B.Tech. III Year I Sem.

LTPC 3003

Prerequisites

- 1. Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of digital signal processing is desirable.
- 2. A course on "Computational Mathematics"
- 3. A course on "Computer Oriented Statistical Methods"

Course Objectives

- Provide a theoretical and mathematical foundation of fundamental Digital Image Processing concepts.
- The topics include image acquisition; sampling and quantization; preprocessing; enhancement; restoration; segmentation; and compression.

Course Outcomes

- Demonstrate the knowledge of the basic concepts of two-dimensional signal acquisition, sampling, and quantization.
- Demonstrate the knowledge of filtering techniques.
- Demonstrate the knowledge of 2D transformation techniques.
- Demonstrate the knowledge of image enhancement, segmentation, restoration and compression techniques.

UNIT - I

Digital Image Fundamentals: Digital Image through Scanner, Digital Camera. Concept of Gray Levels. Gray Level to Binary Image Conversion. Sampling and Quantization. Relationship between Pixels. Imaging Geometry. 2D Transformations-DFT, DCT, KLT and SVD.

UNIT - II

Image Enhancement in Spatial Domain Point Processing, Histogram Processing, Spatial Filtering, Enhancement in Frequency Domain, Image Smoothing, Image Sharpening.

UNIT - III

Image Restoration Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

UNIT-IV

Image Segmentation Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Image Compression Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Source Encoder and Decoder, Error Free Compression, Lossy Compression.

TEXT BOOK:

1. Digital Image Processing: R.C. Gonzalez & R. E. Woods, Addison Wesley/Pearson Education, 2nd Ed, 2004.

- 1. Fundamentals of Digital Image Processing: A. K. Jain, PHI.
- 2. Digital Image Processing using MAT LAB: Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins: Pearson Education India, 2004.
- 3. Digital Image Processing: William K. Pratt, John Wiley, 3rd Edition, 2004.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

B.Tech. III Year I Sem.

L TPC 3003

Prerequisites:

- 1. A course on "Mathematical Foundations of Computer Science".
- 2. A course on "Computer Programming and Data Structures".

Course Objectives:

- Introduce important paradigms of programming languages
- To provide conceptual understanding of high-level language design and implementation
- Topics include programming paradigms; syntax and semantics; data types, expressions and statements; subprograms and blocks; abstract data types; concurrency; functional and logic programming languages; and scripting languages

Course Outcomes:

- Acquire the skills for expressing syntax and semantics in formal notation
- Identify and apply a suitable programming paradigm for a given computing application
- Gain knowledge of the features of various programming languages and their comparison

UNIT - I

Preliminary Concepts: Reasons for Studying Concepts of Programming Languages, Programming Domains, Language Evaluation Criteria, Influences on Language Design, Language Categories, Language Design Trade-Offs, Implementation Methods, Programming Environments Syntax and Semantics: General Problem of Describing Syntax and Semantics, Formal Methods of Describing Syntax, Attribute Grammars, Describing the Meanings of Programs

UNIT - II

Names, Bindings, and Scopes: Introduction, Names, Variables, Concept of Binding, Scope, Scope and Lifetime, Referencing Environments, Named Constants

Data Types: Introduction, Primitive Data Types, Character String Types, User Defined Ordinal Types, Array, Associative Arrays, Record, Union, Tuple Types, List Types, Pointer and Reference Types, Type Checking, Strong Typing, Type Equivalence Expressions and Statements, Arithmetic Expressions, Overloaded Operators, Type Conversions, Relational and Boolean Expressions, Short Circuit Evaluation, Assignment Statements, Mixed-Mode

Assignment Control Structures – Introduction, Selection Statements, Iterative Statements, Unconditional Branching, Guarded Commands.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - III

Subprograms and Blocks: Fundamentals of Sub-Programs, Design Issues for Subprograms, Local Referencing Environments, Parameter Passing Methods, Parameters that Are Subprograms, Calling Subprograms Indirectly, Overloaded Subprograms, Generic Subprograms, Design Issues for Functions, User Defined Overloaded Operators, Closures, Coroutines Implementing Subprograms: General Semantics of Calls and Returns, Implementing Simple Subprograms, Implementing Subprograms with Stack-Dynamic Local Variables, Nested Subprograms, Blocks, Implementing Dynamic Scoping.

Abstract Data Types: The Concept of Abstraction, Introductions to Data Abstraction, Design Issues, Language Examples, Parameterized ADT, Encapsulation Constructs, Naming Encapsulations

UNIT - IV

Concurrency: Introduction, Introduction to Subprogram Level Concurrency, Semaphores, Monitors, Message Passing, Java Threads, Concurrency in Function Languages, Statement Level Concurrency

Exception Handling and Event Handling: Introduction, Exception Handling in Ada, C++, Java, Introduction to Event Handling, Event Handling with Java and C#.

UNIT - V

Functional Programming Languages: Introduction, Mathematical Functions, Fundamentals of Functional Programming Language, LISP, Support for Functional Programming in Primarily Imperative Languages, Comparison of Functional and Imperative Languages

Logic Programming Language: Introduction, an Overview of Logic Programming, Basic Elements of Prolog, Applications of Logic Programming.

Scripting Language: Pragmatics, Key Concepts, Case Study: Python – Values and Types, Variables, Storage and Control, Bindings and Scope, Procedural Abstraction, Data Abstraction, Separate Compilation, Module Library. (Text Book 2)

TEXT BOOKS:

- 1. Concepts of Programming Languages Robert. W. Sebesta 10/E, Pearson Education.
- 2. Programming Language Design Concepts, D. A. Watt, Wiley Dreamtech, 2007.

- 1. Programming Languages, 2nd Edition, A.B. Tucker, R. E. Noonan, TMH.
- 2. Programming Languages, K. C. Louden, 2nd Edition, Thomson, 2003.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

CYBER SECURITY (Professional Elective – II)

B.Tech. III Year I Sem.

LTPC 3003

Prerequisites: NIL Course objectives:

- To familiarize various types of cyber-attacks and cyber-crimes
- To give an overview of the cyber laws
- To study the defensive techniques against these attacks

Course Outcomes:

• The students will be able to understand cyber-attacks, types of cybercrimes, cyber laws and also how to protect them self and ultimately the entire Internet community from such attacks.

UNIT - I

Introduction to Cyber Security: Basic Cyber Security Concepts, layers of security, Vulnerability, threat, Harmful acts, Internet Governance — Challenges and Constraints, Computer Criminals, CIA Triad, Assets and Threat, motive of attackers, active attacks, passive attacks, Software attacks, hardware attacks, Spectrum of attacks, Taxonomy of various attacks, IP spoofing, Methods of defense, Security Models, risk management, Cyber Threats-Cyber Warfare, Cyber Crime, Cyber terrorism, Cyber Espionage, etc., Comprehensive Cyber Security Policy.

UNIT - II

Cyberspace and the Law & Cyber Forensics: Introduction, Cyber Security Regulations, Roles of International Law. The INDIAN Cyberspace, National Cyber Security Policy.

Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Forensics Investigation, Challenges in Computer Forensics, Special Techniques for Forensics Auditing.

UNIT - III

Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

Cyber Security: Organizational Implications: Introduction, cost of cybercrimes and IPR issues, web threats for organizations, security and privacy implications, social media marketing: security risks and perils for organizations, social computing and the associated challenges for organizations.

Cybercrime and Cyber terrorism: Introduction, intellectual property in the cyberspace, the ethical dimension of cybercrimes the psychology, mindset and skills of hackers and other cyber criminals.

UNIT - V

Privacy Issues: Basic Data Privacy Concepts: Fundamental Concepts, Data Privacy Attacks, Data linking and profiling, privacy policies and their specifications, privacy policy languages, privacy in different domains- medical, financial, etc.

Cybercrime: Examples and Mini-Cases

Examples: Official Website of Maharashtra Government Hacked, Indian Banks Lose Millions of Rupees, Parliament Attack, Pune City Police Bust Nigerian Racket, e-mail spoofing instances.

Mini-Cases: The Indian Case of online Gambling, An Indian Case of Intellectual Property Crime, Financial Frauds in Cyber Domain.

TEXT BOOKS:

- 1. Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley
- 2. B. B. Gupta, D. P. Agrawal, Haoxiang Wang, Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives, CRC Press, ISBN 9780815371335, 2018.

- 1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.
- 2. Introduction to Cyber Security, Chwan-Hwa(john) Wu,J. David Irwin, CRC Press T&F Group.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

EMBEDDED SYSTEMS (Professional Elective – II)

B.Tech. III Year I Sem.

LTPC 3003

Pre-requisites:

1. A course on "Computer Organization and Architecture"

Course Objectives:

- To provide an overview of principles of Embedded System
- To provide a clear understanding of role of firmware, operating systems in correlation with hardware systems.

Course Outcomes:

- Expected to understand the selection procedure of processors in the embedded domain.
- Design procedure of embedded firm ware.
- Expected to visualize the role of realtime operating systems in embedded systems.
- Expected to evaluate the correlation between task synchronization and latency issues

UNIT - I

Introduction to Embedded Systems: Processor embedded into a system, Embedded Hardware units and devices in a system, Embedded software in a system, Design process of an embedded system, classification of embedded systems, characteristics and quality attributes of an embedded systems

UNIT - II

Introduction to processor/microcontroller architecture, Real world interfacing, processor and memory organization, memory types, memory maps and addresses, interrupt sources and interrupt service mechanism.

UNIT - III

On board Communication Basics: serial; communication devices, Parallel devices, Wireless devices, Real time clock, Serial bus communication Protocols - I2C, SPI; Parallel buss communication - ISA, PCI.

UNIT-IV

Embedded Firmware Development: Overview of programming concepts - in assembly language and in high level language 'C', C Program elements- Heads, Source files, Processor Directives, Macros, Functions, Data types and Data Structures

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

OS Based Embedded Systems: OS services - Process/Task Management, Memory Management, I/O subsystem manager, Inter Process/Task communications - Tasks, Task states, Shared data, Signals, Message Queues, Mailbox, Pipes and concepts of Semaphores.

TEXT BOOK:

- 1. Embedded Systems, Raj Kamal, 2nd edition, Tata Mc Graw Hill
- 2. Shibu K V, "Introduction to Embedded Systems", Second Edition, Mc Graw Hill

- Rajkamal, Embedded Systems Architecture, Programming and Design, Tata McGraw-Hill
- 2. Frank Vahid and Tony Givargis, "Embedded Systems Design" A Unified Hardware/Software Introduction, John Wiley
- 3. Lyla, "Embedded Systems" –Pearson
- 4. David E. Simon, An Embedded Software Primer, Pearson Education Asia, First Indian Reprint 2000.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

INFORMATION RETRIEVAL SYSTEMS

(Professional Elective – II)

B.Tech. III Year I Sem.

LTPC 3003

Prerequisites:

1. Data Structures

Course Objectives:

- To learn the concepts and algorithms in Information Retrieval Systems
- To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

Course Outcomes:

- Ability to apply IR principles to locate relevant information large collections of data
- Ability to design different document clustering algorithms
- Implement retrieval systems for web search tasks.
- Design an Information Retrieval System for web search tasks.

UNIT - I

Introduction to Information Retrieval Systems: Definition of Information Retrieval System, Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database Management Systems, Digital Libraries and Data Warehouses Information Retrieval System Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities

UNIT - II

Cataloging and Indexing: History and Objectives of Indexing, Indexing Process, Automatic Indexing, Information Extraction Data Structure: Introduction to Data Structure, Stemming Algorithms, Inverted File Structure, N-Gram Data Structures, PAT Data Structure, Signature File Structure, Hypertext and XML Data Structures, Hidden Markov Models.

UNIT - III

Automatic Indexing: Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages

Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of Clusters

UNIT - IV

User Search Techniques: Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies

UNIT - V

Text Search Algorithms: Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems
Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval

TEXT BOOK:

1. Information Storage and Retrieval Systems – Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer.

- 1. Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992.
- 2. Information Storage & Retrieval by Robert Korfhage John Wiley & Sons.
- 3. Modern Information Retrieval by Yates and Neto Pearson Education.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SOFT COMPUTING (Professional Elective – II)

B.Tech. III Year I Sem.

LTPC 3003

Prerequisites:

1. Fundamental Mathematics.

Course Objectives:

- To learn various types of soft computing techniques and their applications.
- To acquire the knowledge of neural network architectures, learning methods and algorithms.
- To understand Fuzzy logic, Genetic algorithms and their applications.

Course Outcomes:

- Understand theoretical and practical aspects of distributed database systems.
- Understand various soft computing techniques.
- Understand various learning models and Neural Network Architectures.
- Understand approximate reasoning using fuzzy logic.
- Analyse and design Genetic algorithms in different applications.
- Apply soft computing techniques to solve different applications.

UNIT - I

Soft computing vs. Hard computing, Various types of soft computing techniques. Artificial Neural Networks: Fundamental concepts, Evolution of neural networks, Basic models of artificial neural network, important terminologies of ANNs. McCulloch-Pitts neuron, linear separability, Hebb network.

UNIT - II

Supervised Learning Neural Networks: Perceptron networks, Adaptive linear neuron (Adaline), Multiple Adaptive linear neuron (Madaline), Back propagation network.

UNIT - III

Unsupervised Learning Neural Networks: Kohonen Self Organising networks, Adaptive resonance theory.

Associate Memory Networks: Bidirectional associative memory network, Hopfield networks.

UNIT - IV

Fuzzy Logic: Introduction to classical sets and Fuzzy sets, Fuzzy relations, Tolerance and equivalence relations, Membership functions, Defuzzification.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Genetic Algorithms: Introduction, Basic operators and terminology, Traditional algorithm vs. genetic algorithm, Simple genetic algorithm, General genetic algorithm, Classification of genetic algorithm, Genetic programming, Applications of genetic algorithm.

TEXT BOOK:

1. S.N. Sivanandam& S.N. Deepa, "Principles of soft computing", Wiley publications, 2nd Edition, 2011.

- 1. S. Rajasekaran& G.A. Vijayalakshmipai, "Neural Networks, Fuzzy logic & Genetic Algorithms, Synthesis & Applications", PHI publication, 2008.
- 2. LiMin Fu, "Neural Networks in Computer Intelligence", McGraw-Hill edition, 1994.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

NATURAL LANGUAGE PROCESSING (Professional Elective – II)

B.Tech. III Year I Sem.

LTPC 3003

Prerequisites:

1. Data structures and compiler design

Course Objectives:

• Introduction to some of the problems and solutions of NLP and their relation to linguistics and statistics.

Course Outcomes:

- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems
- Manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- Design, implement, and analyze NLP algorithms; and design different language modeling Techniques.

UNIT - I

Finding the Structure of Words: Words and Their Components, Issues and Challenges, Morphological Models

Finding the Structure of Documents: Introduction, Methods, Complexity of the Approaches, Performances of the Approaches, Features.

UNIT - II

Syntax I: Parsing Natural Language, Treebanks: A Data-Driven Approach to Syntax, Representation of Syntactic Structure, Parsing Algorithms

UNIT – III

Syntax II: Models for Ambiguity Resolution in Parsing, Multilingual Issues.

Semantic Parsing I: Introduction, Semantic Interpretation, System Paradigms, Word Sense

UNIT - IV

Semantic Parsing II: Predicate-Argument Structure, Meaning Representation Systems

UNIT - V

Language Modeling: Introduction, N-Gram Models, Language Model Evaluation, Bayesian parameter estimation, Language Model Adaptation, Language Models- class based, variable length, Bayesian topic based, Multilingual and Cross Lingual Language Modeling.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

1. Multilingual natural Language Processing Applications: From Theory to Practice – Daniel M. Bikel and Imed Zitouni, Pearson Publication.

- 1. Speech and Natural Language Processing Daniel Jurafsky & James H Martin, Pearson Publications.
- 2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

COMPUTER NETWORKS LAB

B.Tech. III Year I Sem.

LTPC

0021

Course Objectives

- To understand the working principle of various communication protocols.
- To understand the network simulator environment and visualize a network topology and observe its performance
- To analyze the traffic flow and the contents of protocol frames

Course Outcomes

- Implement data link layer farming methods
- Analyze error detection and error correction codes.
- Implement and analyze routing and congestion issues in network design.
- Implement Encoding and Decoding techniques used in presentation layer
- To be able to work with different network tools

List of Experiments

- 1. Implement the data link layer framing methods such as character, character-stuffing and bit stuffing.
- 2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
- 3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
- 4. Implement Dijsktra's algorithm to compute the shortest path through a network
- 5. Take an example subnet of hosts and obtain a broadcast tree for the subnet.
- 6. Implement distance vector routing algorithm for obtaining routing tables at each node.
- 7. Implement data encryption and data decryption
- 8. Write a program for congestion control using Leaky bucket algorithm.
- 9. Write a program for frame sorting techniques used in buffers.

10. Wireshark

- i. Packet Capture Using Wire shark
- ii. Starting Wire shark
- iii. Viewing Captured Traffic
- iv. Analysis and Statistics & Filters.

How to run Nmap scan

Operating System Detection using Nmap Do the following using NS2 Simulator

- i. NS2 Simulator-Introduction
- ii. Simulate to Find the Number of Packets Dropped
- iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
- iv. Simulate to Find the Number of Packets Dropped due to Congestion
- v. Simulate to Compare Data Rate & Throughput.
- vi. Simulate to Plot Congestion for Different Source/Destination
- vii. Simulate to Determine the Performance with respect to Transmission of Packets

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOK:

1. Computer Networks, Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI.

- 1. An Engineering Approach to Computer Networks, S. Keshav, 2nd Edition, Pearson Education.
- 2. Data Communications and Networking Behrouz A. Forouzan. 3rd Edition, TMH.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

WEB TECHNOLOGIES LAB

B.Tech. III Year I Sem.

LTPC

0021

List of Experiments

- 1. Write a PHP script to print prime numbers between 1-50.
- 2. PHP script to
 - a. Find the length of a string.
 - b. Count no of words in a string.
 - c. Reverse a string.
 - d. Search for a specific string.
- 3. Write a PHP script to merge two arrays and sort them as numbers, in descending order.
- 4. Write a PHP script that reads data from one file and write into another file.
- 5. Develop static pages (using Only HTML) of an online book store. The pages should resemble: www.amazon.com. The website should consist the following pages.
 - a) Home page
 - b) Registration and user Login
 - c) User Profile Page
 - d) Books catalog
 - e) Shopping Cart
 - f) Payment By credit card
 - g) Order Conformation
- 6. Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.
- 7. Create and save an XML document on the server, which contains 10 users information. Write a program, which takes User Id as an input and returns the user details by taking the user information from the XML document.
- 8. Install TOMCAT web server. Convert the static web pages of assignments 2 into dynamic web pages using servlets and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.
- 9. Redo the previous task using JSP by converting the static web pages of assignments 2 into dynamic web pages. Create a database with user information and books information. The books catalogue should be dynamically loaded from the database. Follow the MVC architecture while doing the website.

TEXT BOOK:

1. WEB TECHNOLOGIES: A Computer Science Perspective, Jeffrey C. Jackson, Pearson Education.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 1. An Engineering Approach to Computer Networks, S. Keshav, 2nd Edition, Pearson Education.
- 2. Deitel H.M. and Deitel P.J., "Internet and World Wide Web How to program", Pearson International, 2012, 4th Edition.
- 3. J2EE: The complete Reference By James Keogh, McGraw-Hill.
- 4. Bai and Ekedhi, The Web Warrior Guide to Web Programming, Thomson
- 5. Paul Dietel and Harvey Deitel," Java How to Program", Prentice Hall of India, 8th Edition
- 6. Web technologies, Black Book, Dreamtech press.
- 7. Gopalan N.P. and Akilandeswari J., "Web Technology", Prentice Hall of India

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ADVANCED ENGLISH COMMUNICATION SKILLS LAB

B.Tech. III Year I Sem.

LTPC 0021

1.Introduction

The introduction of the Advanced English Communication Skills Lab is considered essential at the B.Tech 3rd year level. At this stage, the students need to prepare themselves for their career which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use appropriate English and perform the following:

- 1. Gathering ideas and information to organise ideas relevantly and coherently.
- 2. Making oral presentations.
- 3. Writing formal letters.
- 4. Transferring information from non-verbal to verbal texts and vice-versa.
- 5. Writing project/research reports/technical reports.
- 6. Participating in group discussions.
- 7. Engaging in debates.
- 8. Facing interviews.
- 9. Taking part in social and professional communication.

2. Objectives:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, with a focus on vocabulary
- To enable them to listen to English spoken at normal conversational speed by educated English speakers
- · To respond appropriately in different socio-cultural and professional contexts
- To communicate their ideas relevantly and coherently in writing
- To prepare the students for placements.

3. Syllabus:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

- Activities on Listening and Reading Comprehension: Active Listening –
 Development of Listening Skills Through Audio clips Benefits of Reading Methods
 and Techniques of Reading Basic Steps to Effective Reading Common Obstacles –
 Discourse Markers or Linkers Sub- skills of reading Reading for facts, negative facts
 and Specific Details- Guessing Meanings from Context, Inferring Meaning Critical
 Reading Reading Comprehension Exercises for Practice.
- 2. Activities on Writing Skills: Vocabulary for Competitive Examinations Planning for Writing Improving Writing Skills Structure and presentation of different types of writing Free Writing and Structured Writing Letter Writing Writing a Letter of Application Resume vs. Curriculum Vitae Writing a Résumé Styles of Résumé e-Correspondence Emails Blog Writing (N)etiquette Report Writing Importance of Reports Types and Formats of Reports Technical Report Writing Exercises for Practice.
- 3. Activities on Presentation Skills Starting a conversation responding appropriately and relevantly using the right language and body language Role Play in different situations including Seeking Clarification, Making a Request, Asking for and Refusing Permission, Participating in a Small Talk Oral presentations (individual and group) through JAM sessions- PPTs Importance of Presentation Skills Planning, Preparing, Rehearsing and Making a Presentation Dealing with Glossophobia or Stage Fear –

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Understanding Nuances of Delivery - Presentations through Posters/Projects/Reports - Checklist for Making a Presentation and Rubrics of Evaluation

- 4. **Activities on Group Discussion (GD):** Types of GD and GD as a part of a Selection Procedure Dynamics of Group Discussion- Myths of GD Intervention, Summarizing Modulation of Voice, Body Language, Relevance, Fluency and Organization of Ideas Do's and Don'ts GD Strategies Exercises for Practice.
- 5. **Interview Skills**: Concept and Process Interview Preparation Techniques Types of Interview Questions Pre-interview Planning, Opening Strategies, Answering Strategies Interview Through Tele-conference & Video-conference Mock Interviews.

4. Minimum Requirement:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- One PC with latest configuration for the teacher
- T. V, a digital stereo & Camcorder
- Headphones of High quality
- **5. Suggested Software:** The software consisting of the prescribed topics elaborated above should be procured and used.
 - TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
 - Oxford Advanced Learner's Dictionary, 10th Edition
 - Cambridge Advanced Learner's Dictionary
 - DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
 - Lingua TOEFL CBT Insider, by Dreamtech

TEXT BOOKS:

- 1. Rizvi, M. Ashraf (2018). *Effective Technical Communication*. (2nd ed.). McGraw Hill Education (India) Pvt. Ltd.
- 2. Suresh Kumar, E. (2015). Engineering English. Orient BlackSwan Pvt. Ltd.
- 3. Bailey, Stephen. (2018). Academic *Writing: A Handbook for International Students*. (5th Edition). Routledge.
- 4. Koneru, Aruna. (2016). *Professional Communication*. McGraw Hill Education (India) Pvt. Ltd.
- 5. Raman, Meenakshi & Sharma, Sangeeta. (2022). *Technical Communication, Principles and Practice*. (4TH Edition) Oxford University Press.
- 6. Anderson, Paul V. (2007). *Technical Communication*. Cengage Learning Pvt. Ltd. New Delhi.
- 7. McCarthy, Michael; O'Dell, Felicity & Redman, Stuart. (2017). *English Vocabulary in Use* Series. Cambridge University Press
- 8. Sen, Leela. (2009). Communication Skills. PHI Learning Pvt Ltd., New Delhi.
- 9. Elbow, Peter. (1998). Writing with Power. Oxford University Press.
- 10. Goleman, Daniel. (2013). *Emotional Intelligence: Why it can matter more than IQ.* Bloomsbury Publishing

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

LOGICAL REASONING - 1

B.Tech. III Year I Sem.

L TPC 0021

Quantitative Aptitude

- 1. **Simple Interest**: Definitions, Problems on interest and amount, Problems, when rate of interest and time period are numerically equal. Compound Interest: Definition and formula for amount in compound interest, Difference between simple interest and compound interest for 2 years on the same principle and time period.
- 2. **Profit & Loss:** Cost price, selling price, marked/list price, profit/gain, discount, use of false scale for selling an article, discount series and net selling price, successive Selling.
- **3. Percentages, Ratio & Proportions:** Calculating a percentage, calculating increase or decrease, calculating percent change, calculating successive percentages, definition of ratio and proportions, direct proportion, Inverse or reciprocal proportion, continued proportion, Mean proportion, Third proportion, Fourth proportion, compound ratio.
- 4. **Averages**: Definition of Average, Rules of Average, Problems on Average, Problems on Weighted Average, Finding average using assumed mean method.
- 5. **Time and Distance:** Relation between speed, distance and time, converting km/h into m/s and vice versa, Problems on average speed, Problems on relative speed, Problems on trains.
- 6. **Time and Work:** Problems on Unitary method, Relation between Men, Days, Hours and Work, Problems on Man-Day-Hours method, Problems on alternate days, Problems on Pipes and Cisterns.

Logical Reasoning:

- 7. **Logical Connectives:** Definition of simple statement, Definition of compound statement, finding the implications for compound statements, finding the negations for compound statements.
- 8. **Syllogism:** Definition of statement/premises and conclusion, explanation through Venn diagram, problems on two/three statements and one/two conclusions, identification of statements and conclusions from the given set of statements. Statements and Arguments: Types of arguments, Strong argument, weak argument, identifying strong/weak arguments from a given statement.
- 9. **Analogy Classifications**: Definition of Analogy, Problems on number analogy, Problems on letter analogy, Problems on verbal analogy.
- 10. **Non Verbal Reasoning:** Identification of continued figure or odd figure by using analogy, series, rotation in clockwise and rotation in anticlockwise, vertical, horizontal, alternative rotation, addition, subtraction.
- 11. **Blood Relations**: Blood relations on Family Tree concepts (relationships in the family), paternal side relations, maternal side relations, simple and direct relationships, relation puzzles, coded relations.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

12. **Binary Logic**: Definition of a truth-teller, Definition of a liar, Definition of an alternator, solving problems using method of assumptions, solving analytical puzzles using binary logic.

TEXT BOOKS:

- 1. A Modern Approach to Logical reasoning, R S Agarwal, S .Chand publications, 2013.
- 2. Quantitative Aptitude for Competitive examinations, Dinesh Khattar, Pearson Education 4th Editin. 2019.

- 1. Quantitative Aptitude and Reasoning, R. V. Praveen, PHI Learning Private Ltd, 2nd Edition, 2013.
- 2. Quantitative Aptitude for competitive examinations, Abhijith Guha, McGraw Hill
- 3. Education, 6th Edition, 2017.
- 4. Analytical & Logical Reasoning, Peeyush Bhardwaj, Arihant Publications, 4th Edition, 2015.
- 5. Logical Reasoning for the CAT, Arun Sharma, McGraw Hill Education, 2nd Edition 2014.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

INTELLECTUAL PROPERTY RIGHTS

B.Tech. III Year I Sem.

L TPC 3000

Course Objectives:

- Significance of intellectual property and its protection
- Introduce various forms of intellectual property

Course Outcomes:

- Distinguish and Explain various forms of IPRs.
- Identify criteria to fit one's own intellectual work in particular form of IPRs.
- Apply statutory provisions to protect particular form of IPRs.
- Appraise new developments in IPR laws at national and international level

UNIT - I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT - II

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT - III

Law of copyrights: Fundamental of copyright law, originality of material, rights of reproduction, rights to perform the work publicly, copyright ownership issues, copyright registration, notice of copyright, International copyright law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT - IV

Trade Secrets: Trade secret law, determination of trade secret status, liability for misappropriations of trade secrets, protection for submission, trade secret litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

UNIT - V

New development of intellectual property: new developments in trade mark law; copyright law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copyright law, international patent law, and international development in trade secrets law.

TEXT BOOK:

1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.

REFERENCE BOOK:

1. Intellectual property right – Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SKILL DEVELOPMENT COURSE (UI DESIGN-FLUTTER)

B.Tech. III Year I Sem.

L TPC 0021

Course Objectives:

- Learns to Implement Flutter Widgets and Layouts
- Understands Responsive UI Design and with Navigation in Flutter
- Knowledge on Widges and customize widgets for specific UI elements, Themes
- Understand to include animation apart from fetching data

Course Outcomes:

- Implements Flutter Widgets and Layouts
- Responsive UI Design and with Navigation in Flutter
- Create custom widgets for specific UI elements and also Apply styling using themes and custom styles.
- Design a form with various input fields, along with validation and error handling
- Fetches data and write code for unit Test for UI components and also animation

List of Experiments: Students need to implement the following experiments

- 1. a) Install Flutter and Dart SDK.
 - b) Write a simple Dart program to understand the language basics.
- 2. a) Explore various Flutter widgets (Text, Image, Container, etc.).
 - b) Implement different layout structures using Row, Column, and Stack widgets.
- 3. a) Design a responsive UI that adapts to different screen sizes.
 - b) Implement media queries and breakpoints for responsiveness.
- 4. a) Set up navigation between different screens using Navigator.
 - b) Implement navigation with named routes.
- 5. a) Learn about stateful and stateless widgets.
 - b) Implement state management using set State and Provider.
- 6. a) Create custom widgets for specific UI elements.
 - b) Apply styling using themes and custom styles.
- 7. a) Design a form with various input fields.
 - b) Implement form validation and error handling.
- 8. a) Add animations to UI elements using Flutter's animation framework.
 - b) Experiment with different types of animations (fade, slide, etc.).
- 9. a) Fetch data from a REST API.
 - b) Display the fetched data in a meaningful way in the UI.
- 10. a) Write unit tests for UI components.
 - b) Use Flutter's debugging tools to identify and fix issues.

TEXT BOOK:

1. Marco L. Napoli, Beginning Flutter: A Hands-on Guide to App Development.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

CLOUD COMPUTING

B.Tech. III Year II Sem.

LTPC 3003

Prerequisites:

- 1. A course on "Computer Networks"
- 2. A course on "Operating Systems"
- 3. A course on "Distributed Systems"

Course Objectives:

- This course provides an insight into cloud computing
- Topics covered include- distributed system models, different cloud service models, service- oriented architectures, cloud programming and software environments, resource management.

Course Outcomes:

- Distinguish between, supervised, unsupervised and semi-supervised learning.
- Ability to understand various service delivery models of a cloud computing architecture.
- Ability to understand the ways in which the cloud can be programmed and deployed.
- Understanding cloud service providers

UNIT - I

Computing Paradigms: High performance computing, parallel computing, Distributed computing, cluster computing, Grid computing, Cloud computing, Bio computing, Mobile computing, Quantum computing, optical computing, Nano computing.

UNIT - II

Cloud computing fundamentals: Motivation for Cloud Computing, The Need for Cloud Computing, Definition of Cloud computing, Principles of Cloud computing, Five Essential Characteristics, Four Cloud Deployment Models, on demand services like Elastic resource pooling using Amazon Elastic Compute Cloud (EC2) as example, Rapid elasticity using Amazon EBS, Amazon EFS, Amazon S3, Amazon LEX, Amazon Lambda, overview of Docker CLI commands cloud deployment using Docker.

UNIT-III

Cloud computing Architecture and Management: Cloud architecture, Layer, Anatomy of the Cloud, Managing the cloud application, Managing the cloud infrastructure using AWS cloud Front, Managing the cloud application, Migrating Application to cloud, Phases of cloud migration, Approaches for Cloud Migration, Managing Identity and Access (IAM).

UNIT-IV

Cloud service models: Infrastructure as service, characteristics of IaaS, Suitability of IaaS, pros and cons of Iaas, summary of Iaas Providers, Platform as a Service with examples of with example of Amazon DynamoDB, characteristics of PaaS, Suitability of PaaS, pros and cons of PaaS, summary of Paas Providers, software as service, characteristics of SaaS, Suitability of SaaS, pros and cons of Saas, summary of Saas Providers.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-V

Organizational readiness and Data security AWS cloud: Organizational readiness and change management in the cloud age, Data Security in the cloud, legal issues in cloud computing. Amazon Rekognition using server less API

Introduction to Google Cloud Platform and Azures: Create and deploy a static web app, execute a google compute engine, Microsoft Azure, Services and Applications.

TEXT BOOKS:

- 1. Essentials of Cloud Computing- k. Chandrasekharan, 2014.
- 2. Cloud computing principles and paradigms by Rajkumar Buyya, 2013.
- 3. Learning Amazon Web Services (AWS): A Hands-On Guide to the Fundamentals of AWS Cloud– by Mark Wilkins, Kindle E Textbook, 1st edition, 2019.
- 4. Microsoft Azure for Dummies by <u>Timothy L. Warner</u>, Wiley publications, 1st Edition, 2021.

- 1. Microsoft Azure for Dummies by Timothy L. Warner, Wiley publications, 1st Edition, 2021.
- 2. Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Reilly, SPD, rp 2011.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

AUTOMATA THEORY AND COMPILER DESIGN

B.Tech. III Year II Sem.

L TPC 3003

Prerequisite: Nil Course Objectives

- To introduce the fundamental concepts of formal languages, grammars and automata theory.
- To understand deterministic and non-deterministic machines and the differences between decidability and undecidability.
- Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills necessary for constructing a compiler.
- Topics include phases of compiler, parsing, syntax directed translation, type checking use of symbol tables, intermediate code generation

Course Outcomes

- Able to employ finite state machines for modeling and solving computing problems.
- Able to design context free grammars for formal languages.
- Able to distinguish between decidability and undecidability.
- Demonstrate the knowledge of patterns, tokens & regular expressions for lexical analysis.
- Acquire skills in using lex tool and design LR parsers

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA to DFA

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications of the Pumping Lemma.

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Parse Trees, Ambiguity in Grammars and Languages.

UNIT - III

Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA and CFG's, Acceptance by final state

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

Introduction: The structure of a compiler,

Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens,

The Lexical- Analyzer Generator Lex,

Syntax Analysis: Introduction, Context-Free Grammars, Writing a Grammar, Top-Down Parsing, Bottom- Up Parsing, **Introduction to LR Parsing:** Simple LR, More Powerful LR

Parsers

UNIT - V

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's.

Intermediate-Code Generation: Variants of Syntax Trees, Three-Address Code

Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack,

Heap Management

TEXT BOOKS:

- 1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
- 2. Theory of Computer Science Automata languages and computation, Mishra and Chandrashekaran, 2nd Edition, PHI.

- 1. Compilers: Principles, Techniques and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry
- 2. D. Ullman, 2nd Edition, Pearson.
- 3. Introduction to Formal languages Automata Theory and Computation, Kamala Krithivasan, Rama R, Pearson.
- 4. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 5. lex & yacc John R. Levine, Tony Mason, Doug Brown, O'reilly Compiler Construction, Kenneth
- 6. C. Louden, Thomson. Course Technology.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

MACHINE LEARNING

B.Tech. III Year II Sem.

LTPC 3003

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Python Programming".

Course Objectives:

- 1. To introduce students to the basic concepts and techniques of Machine Learning.
- 2. To have a thorough understanding of the Supervised and Unsupervised learning techniques
- 3. To study the various probability-based learning techniques

Course Outcomes:

- 1. Distinguish between, supervised, unsupervised and semi-supervised learning
- 2. Understand algorithms for building classifiers applied on datasets of non-linearly separable classes
- 3. Understand the principles of evolutionary computing algorithms
- 4. Design an ensembler to increase the classification accuracy

UNIT - I

Learning, Types of Machine Learning, Supervised Learning, supervised, unsupervised, semi-supervised, Reinforcement Learning, Batch and Online Learning, Main Challenges of Machine Learning

UNIT-II

Regression: Introduction to Regression analysis, measure of linear relationship, Regression with stats

models, determining coefficient, meaning and significance of coefficients, coefficient calculation with least

square method, Types of regression, Simple Linear Regression, Using Multiple features, Polynomial

Regression, Metrics for Regression: MSE, RMSE, MAE.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - III

Learning with Trees, Decision Trees, Constructing Decision Trees, Classification and Regression Trees, Ensemble Learning, Boosting, Bagging, Different ways to Combine Classifiers, Basic Statistics, Gaussian Mixture Models, Nearest Neighbor Methods, Unsupervised Learning, K means Algorithms

UNIT-IV

Classification: Classification problem, Probability based approach, Logistic Regression- log-odd, sigmoid transformation, Metrics: Confusion Matrix, Accuracy, Error Rate, Precision, Recall, ROC curve, F1 score, and introduction to gradient descent.

Evolutionary Learning, Genetic algorithms, Genetic Offspring: - Genetic Operators, Using Genetic Algorithms

UNIT - V

Non-Parametric SVM classification: About Non parametric classification, Decision Trees: Entropy, gain ratio, Information Gain, Splitting criteria,

Ensemble Method: Introduction to Random Forest, Accuracy measure & performance

Instance based learning- Introduction, KNN algorithm, Distance measures, model building, locally weighted regression, radial basis functions, SVM classifier, hyper-plane, slack variables, geometric transformation kernel trick, kernel transformation.

TEXT BOOKS:

- 1. Hands-On Machine Learning with Scikit-Learn and Tensor Flow -Aurélien Géron, O'Reilly Media, 2017.
- 2. Practical Python Data Visualization: A Fast Track Approach to Learning Data Visualization with Python, Ashwin Pajankar, A Press.
- 3. Python: End-to-end Data Analysis Phuong Vo.T.H, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz FelipeMartins, Packet Pub.

- 1. Tom M Mitchell, —Machine Learning, First Edition, McGraw Hill Education, 2013.
- 2. Peter Flach, —Machine Learning: The Art and Science of Algorithms that Make Sense of Datal, First Edition, Cambridge University Press, 2012.
- 3. Jason Bell, —Machine learning, Hands on for Developers and Technical Professionals, FirstEdition, Wiley, 2014
- 4. Ethem Alpaydin, —Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series), Third Edition, MIT Press, 2014

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

FULL STACK DEVELOPMENT (Professional Elective – III)

B.Tech. III Year II Sem.

LTPC 3003

Prerequisites:

- 1. Object Oriented Programming
- 2. Web Technologies

Course Objectives:

• Students will become familiar to implement fast, efficient, interactive and scalable web applications using run time environment provided by the full stack components.

Course Outcomes:

- Understand Full stack components for developing web application.
- Apply packages of NodeJS to work with Data, Files, Http Requests and Responses.
- Use MongoDB data base for storing and processing huge data and connects with NodeJS application.
- Design faster and effective single page applications using Express and Angular.
- Create interactive user interfaces with react components.

UNIT-I

Introduction to Full Stack Development:

Understanding the Basic Web Development Framework- User, Browser, Webserver, Backend Services, Full Stack Components - Node.js, MongoDB, Express, React, Angular. Java Script Fundamentals, NodeJS- Understanding Node.js, Installing Node.js, Working with Node Packages, creating a Node.js Application, Understanding the Node.js Event Model, Adding Work to the Event Queue, Implementing Callbacks.

UNIT-II

Node.js:

Working with JSON, Using the Buffer Module to Buffer Data, Using the Stream Module to Stream Data, Accessing the File System from Node.js- Opening, Closing, Writing, Reading Files and other File System Tasks. Implementing HTTP Services in Node.js- Processing URLs, Processing Query Strings and Form Parameters, Understanding Request, Response, and Server Objects, Implementing HTTP Clients and Servers in Node.js, Implementing HTTPS Servers and Clients. Using Additional Node.js Modules-Using the os Module, Using the util Module, Using the dns Module, Using the crypto Module.

UNIT-III

MongoDB:

Need of NoSQL, Understanding MongoDB, MongoDB Data Types, Planning Your Data Model, Building the MongoDB Environment, Administering User Accounts, Configuring Access Control, Administering Databases, Managing Collections, Adding the MongoDB Driver to Node.js, Connecting to MongoDB from Node.js, Understanding the Objects Used in the MongoDB Node.js Driver, Accessing and Manipulating Databases, Accessing and Manipulating Collections

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

Express and Angular:

Getting Started with Express, Configuring Routes, Using Requests Objects, Using Response Objects. Angular: importance of Angular, Understanding Angular, creating a Basic Angular Application, Angular Components, Expressions, Data Binding, Built-in Directives, Custom Directives, Implementing Angular Services in Web Applications.

UNIT-V

React:

Need of React, Simple React Structure, The Virtual DOM, React Components, Introducing React Components, Creating Components in React, Data and Data Flow in React, Rendering and Life Cycle Methods in React, Working with forms in React, integrating third party libraries, Routing in React.

TEXT BOOKS:

- 1. Brad Dayley, Brendan Dayley, Caleb Dayley., Node.js, MongoDB and Angular Web Development, 2nd Edition, Addison-Wesley, 2019.
- 2. Mark Tielens Thomas, React in Action, 1st Edition, Manning Publications.

- 1. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, Apress, 2019.
- 2. Chris Northwood, The Full Stack Developer: Your Essential Guide to the Everyday Skills Expected of a Modern Full Stack Web Developer', 1st edition, Apress, 2018.
- 3. Kirupa Chinnathambi, Learning React: A Hands-On Guide to Building Web Applications Using React and Redux, 2nd edition, Addison-Wesley Professional, 2018.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

INTERNET OF THINGS (Professional Elective – III)

B.Tech. III Year II Sem.

LTPC 3003

Pre-Requisites: Computer organization, Computer Networks **Course Objectives:**

- To introduce the terminology, technology and its applications
- To introduce the concept of M2M (machine to machine) with necessary protocols
- To introduce the Python Scripting Language which is used in many IoT devices
- To introduce the Raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of web-based services on IoT devices

Course Outcomes:

- Interpret the impact and challenges posed by IoT networks leading to new architectural models.
- Compare and contrast the deployment of smart objects and the technologies to connect them to network.
- Appraise the role of IoT protocols for efficient network communication.
- Identify the applications of IoT in Industry.

UNIT - I

Introduction to Internet of Things –Definition and Characteristics of IoT, Physical Design of IoT, Logical Design of IoT, IoT Enabling Technologies, IoT Levels and Deployment Templates

Domain Specific IoTs – Home automation, Environment, Agriculture, Health and Lifestyle

UNIT-II

IoT and M2M – M2M, Difference between IoT and M2M, SDN and NFV for IoT, IoT System Management with NETCOZF, YANG- Need for IoT system Management, Simple Network management protocol, Network operator requirements, NETCONF, YANG, IoT Systems Management with NETCONF-YANG

UNIT - III

IoT Systems – Logical design using Python-Introduction to Python – Python Data types & Data structures, Control flow, Functions, Modules, Packaging, File handling, Data/Time operations, Classes, Exception, Python packages of Interest for IoT

UNIT - IV

IoT Physical Devices and Endpoints - Raspberry Pi, Linux on Raspberry Pi, Raspberry Pi Interfaces, Programming Raspberry PI with Python, Other IoT devices.

IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs, WAMP-AutoBahn for IoT, Xively Cloud for IoT, Python web application framework –Django, Designing a RESTful web API

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT V

Case studies- Home Automation, Environment-weather monitoring-weather reporting- air pollution monitoring, Agriculture.

TEXT BOOK:

1. Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547.

REFERENCE BOOK:

1. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SCRIPTING LANGUAGES (Professional Elective – III)

B.Tech. III Year II Sem.

LTPC 3003

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Object Oriented Programming Concepts".

Course Objectives:

- This course introduces the script programming paradigm
- Introduces scripting languages such as Perl, Ruby and TCL.
- Learning TCL

Course Outcomes:

- Comprehend the differences between typical scripting languages and typical system and application programming languages.
- Gain knowledge of the strengths and weakness of Perl, TCL and Ruby; and select an appropriate language for solving a given problem.
- Acquire programming skills in scripting language

UNIT - I

Introduction: Ruby, Rails, The structure and Execution of Ruby Programs, Package Management with RUBYGEMS, Ruby and web: Writing CGI scripts, cookies, Choice of Webservers, SOAP and web services

RubyTk – Simple Tk Application, widgets, Binding events, Canvas, scrolling

UNIT - II

Extending Ruby: Ruby Objects in C, the Jukebox extension, Memory allocation, Ruby Type System, Embedding Ruby to Other Languages, Embedding a Ruby Interpreter

UNIT - III

Introduction to PERL and Scripting

Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages. PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines.

UNIT - IV

Advanced perl

Finer points of looping, pack and unpack, filesystem, eval, data structures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Issues.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

TCL-TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures, strings, patterns, files, Advance TCL- eval, source, exec and uplevel commands, Name spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C Interface.

Tk

Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding, Perl-Tk.

TEXT BOOKS:

- 1. The World of Scripting Languages, David Barron, Wiley Publications.
- 2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly
- 3. "Programming Ruby" The Pramatic Programmers guide by Dabve Thomas Second edition

- 1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J.Lee and B. Ware (Addison Wesley) Pearson Education.
- 2. Perl by Example, E. Quigley, Pearson Education.
- 3. rogramming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
- 4. Perl Power, J. P. Flynt, Cengage Learning

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

MOBILE APPLICATION DEVELOPMENT (Professional Elective – III)

B.Tech. III Year II Sem.

LTPC

3003

Prerequisites

- 1. Acquaintance with JAVA programming
- 2. A Course on DBMS

Course Objectives

- To demonstrate their understanding of the fundamentals of Android operating systems
- To improves their skills of using Android software development tools
- To demonstrate their ability to develop software with reasonable complexity on mobile platform
- To demonstrate their ability to deploy software to mobile devices
- To demonstrate their ability to debug programs running on mobile devices

Course Outcomes

- Understand the working of Android OS Practically.
- Develop Android user interfaces
- Develop, deploy and maintain the Android Applications.

UNIT - I

Introduction to Android Operating System: Android OS design and Features – Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools Android application components – Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes

Android Application Lifecycle – Activities, Activity lifecycle, activity states, monitoring state changes

UNIT - II

Android User Interface: Measurements – Device and pixel density independent measuring unit - s Layouts – Linear, Relative, Grid and Table Layouts

User Interface (UI) Components –Editable and non-editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers

Event Handling – Handling clicks or changes of various UI components

Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

UNIT - III

Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity Notifications – Creating and Displaying notifications, Displaying Toasts

UNIT-IV

Persistent Storage: Files – Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference

UNIT - V

Database – Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

TEXT BOOK:

1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012

- 1. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013
- 2. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SOFTWARE TESTING METHODOLOGIES (Professional Elective – III)

B.Tech. III Year II Sem.

L T P C 3 0 0 3

Prerequisites

1. Software Engineering

Course Objectives

- To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
- To develop skills in software test automation and management using the latest tools.

Course Outcomes:

- Understand purpose of testing and path testing
- Understand strategies in data flow testing and domain testing
- Develop logic-based test strategies
- Understand graph matrices and its applications
- Implement test cases using any testing automation tool

UNIT - I

Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT-II

Transaction Flow Testing: transaction flows, transaction flow testing techniques.

Data Flow testing: Basics of data flow testing, strategies in data flow testing, application of data flow testing.

Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT - III

Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.

Logic Based Testing: overview, decision tables, path expressions, ky charts, specifications.

UNIT-IV

State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT - V

Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like Jmeter/selenium/soapUI/Catalon).

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- 1. Software Testing techniques Baris Beizer, Dreamtech, second edition.
- 2. Software Testing Tools Dr. K. V. K. K. Prasad, Dreamtech.

- 1. The craft of software testing Brian Marick, Pearson Education.
- 2. Software Testing Techniques SPD(Oreille)
- 3. Software Testing in the Real World Edward Kit, Pearson.
- 4. Effective methods of Software Testing, Perry, John Wiley.
- 5. Art of Software Testing Meyers, John Wiley.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATA STRUCTURES (Open Elective – I)

B.Tech. III Year II Sem.

L TPC 3003

Prerequisites

1. A course on "Programming for Problem Solving

Course Objectives

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks- Operations, array and linked representations of stacks, stack applications, Queues- operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing- linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, B- Trees, B+ Trees, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees.

UNIT-IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Quick Sort, Heap Sort, External Sorting- Model for external sorting, Merge Sort.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- 2. Data Structures using C-A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan, Cengage Learning.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATABASE MANAGEMENT SYSTEMS (Open Elective – I)

B.Tech. III Year II Sem.

LTP

 \mathbf{C}

3003

Prerequisites: A course on "Data Structures".

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS **Introduction to Database Design:** Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/altering tables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and

EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, multivalued dependencies, FOURTH normal form, FIFTH normal form.

UNIT-IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM),B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

- 1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition. 3rd Edition
- 2. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata McGraw Hill

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

MACHINE LEARNING LAB

B.Tech. III Year II Sem.

L TPC 0021

Course Objective:

• The objective of this lab is to get an overview of the various machine learning techniques and can demonstrate them using python.

Course Outcomes:

- Understand modern notions in predictive data analysis
- Select data, model selection, model complexity and identify the trends
- Understand a range of machine learning algorithms along with their strengths and weaknesses
- Build predictive models from data and analyze their performance

List of Experiments

- 1. Write a python program to compute Central Tendency Measures: Mean, Median, Mode Measure of Dispersion: Variance, Standard Deviation
- 2. Study of Python Basic Libraries such as Statistics, Math, Numpy and Scipy
- 3. Study of Python Libraries for ML application such as Pandas and Matplotlib
- 4. Write a Python program to implement Simple Linear Regression
- 5. Implementation of Multiple Linear Regression for House Price Prediction using sklearn
- 6. Implementation of Decision tree using sklearn and its parameter tuning
- 7. Implementation of KNN using sklearn
- 8. Implementation of Logistic Regression using sklearn
- 9. Implementation of K-Means Clustering
- 10. Performance analysis of Classification Algorithms on a specific dataset (Mini Project)

TEXT BOOK:

1. Machine Learning – Tom M. Mitchell, - MGH.

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

FULL STACK DEVELOPMENT LAB (Professional Elective – III)

B.Tech. III Year II Sem.

LTPC 0021

Prerequisites:

- 1. Object Oriented Programming
- 2. Web Technologies

Course Objectives:

• Introduce fast, efficient, interactive and scalable web applications using run time environment provided by the full stack components.

Course Outcomes:

- Design flexible and responsive Web applications using Node JS, React, Express and Angular.
- Perform CRUD operations with MongoDB on huge amount of data.
- Develop real time applications using react components.
- Use various full stack modules to handle http requests and responses.

List of Experiments

- 1. Create an application to setup node JS environment and display "Hello World".
- 2. Create a Node JS application for user login system.
- 3. Write a Node JS program to perform read, write and other operations on a file.
- 4. Write a Node JS program to read form data from query string and generate response using NodeJS
- 5. Create a food delivery website where users can order food from a particular restaurant listed in the website for handling http requests and responses using NodeJS.
- 6. Implement a program with basic commands on databases and collections using MongoDB.
- 7. Implement CRUD operations on the given dataset using MongoDB.
- 8. Perform Count, Limit, Sort, and Skip operations on the given collections using MongoDB.
- 9. Develop an angular JS form to apply CSS and Events.
- 10. Develop a Job Registration form and validate it using angular JS.
- 11. Write an angular JS application to access JSON file data of an employee from a server using \$http service.
- 12. Develop a web application to manage student information using Express and Angular JS.
- 13. Write a program to create a simple calculator Application using React JS.
- 14. Write a program to create a voting application using React JS
- 15. Develop a leave management system for an organization where users can apply different types of leaves such as casual leave and medical leave. They also can view the available number of days using react application.
- 16. Build a music store application using react components and provide routing among the web pages.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

17. Create a react application for an online store which consist of registration, login, product information pages and implement routing to navigate through these pages.

TEXT BOOKS:

- 1. Brad Dayley, Brendan Dayley, Caleb Dayley., Node.js, MongoDB and Angular Web Development, 2nd Edition, Addison-Wesley, 2019.
- 2. Mark Tielens Thomas., React in Action, 1st Edition, Manning Publications

- 1. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, Apress, 2019.
- 2. Chris Northwood, The Full Stack Developer: Your Essential Guide to the Everyday Skills Expected of a Modern Full Stack Web Developer', 1st edition, Apress, 2018.
- 3. Brad Green& Seshadri. Angular JS. 1st Edition. O'Reilly Media, 2013.
- 4. Kirupa Chinnathambi, Learning React: A Hands-On Guide to Building Web Applications Using React and Redux, 2nd edition, Addison-Wesley Professional, 2018.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

INTERNET OF THINGS LAB (PROFESSIONAL ELECTIVE – III)

B.Tech. III Year II Sem.

LTPC 0021

Course Objectives

- To introduce the raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of distance sensor on IoT devices

Course Outcomes

- Ability to introduce the concept of M2M (machine to machine) with necessary protocols and get awareness in implementation of distance sensor
- Get the skill to program using python scripting language which is used in many IoT devices

List of Experiments

- 1. Using Raspberry pi
 - a. Calculate the distance using a distance sensor.
 - b. Interface an LED and switch with Raspberry pi.
 - c. Interface an LDR with Raspberrry Pi.
- 2. Using Arduino
 - a. Calculate the distance using a distance sensor.
 - b. Interface an LED and switch with Aurdino.
 - c. Interface an LDR with Aurdino
 - d. Calculate temperature using a temperature sensor.
- 3. Using Node MCU
 - a. Calculate the distance using a distance sensor.
 - b. Interface an LED and switch with Raspberry pi.
 - c. Interface an LDR with Node MCU
 - d. Calculate temperature using a temperature sensor.
- 4. Installing OS on Raspberry Pi
 - a) Installation using PiImager
 - b) Installation using image file
 - Downloading an Image
 - Writing the image to an SD card
 - using Linux
 - using Windows
 - Booting up Follow the instructions given in the URL https://www.raspberrypi.com/documentation/computers/getting-started.html
- 5. Accessing GPIO pins using Python
 - a) Installing GPIO Zero library. update your repositories list: install the package for Python 3:
 - b) Blinking an LED connected to one of the GPIO pin
 - c) Adjusting the brightness of an LED Adjust the brightness of an LED (0 to 100, where 100 means maximum brightness) using the in-built PWM wavelength.
- 6. Create a DJANGO project and an app.
- 7. Create a DJANGO view for weather station REST API
- 8. Create DJANGO template
- 9. Configure MYSQL with DJANGO framework

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- 1. Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547.
- 2. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759.

- 1. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer, 2016
- 2. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SCRIPTING LANGUAGES LAB (Professional Elective – III)

B.Tech. III Year II Sem.

LTPC 0021

Prerequisites: Any High level programming language (C, C++)

Course Objectives

- To Understand the concepts of scripting languages for developing web based projects
- To understand the applications the of Ruby, TCL, Perl scripting languages

Course Outcomes

- Ability to understand the differences between Scripting languages and programming languages
- Gain some fluency programming in Ruby, Perl, TCL

LIST OF EXPERIMENTS

- 1. Write a Ruby script to create a new string which is n copies of a given string where n is a non-negative integer
- 2. Write a Ruby script which accept the radius of a circle from the user and compute the parameter and area.
- 3. Write a Ruby script which accept the users first and last name and print them in reverse order with a space between them
- 4. Write a Ruby script to accept a filename from the user print the extension of that
- 5. Write a Ruby script to find the greatest of three numbers
- 6. Write a Ruby script to print odd numbers from 10 to 1
- 7. Write a Ruby script to check two integers and return true if one of them is 20 otherwise return their sum
- 8. Write a Ruby script to check two temperatures and return true if one is less than 0 and the other is greater than 100
- 9. Write a Ruby script to print the elements of a given array
- 10. Write a Ruby program to retrieve the total marks where subject name and marks of a student stored in a hash
- 11. Write a TCL script to find the factorial of a number
- 12. Write a TCL script that multiplies the numbers from 1 to 10
- 13. Write a TCL script for sorting a list using a comparison function
- 14. Write a TCL script to (i) create a list (ii) append elements to the list (iii) Traverse the list (iv) Concatenate the list
- 15. Write a TCL script to comparing the file modified times.
- 16. Write a TCL script to Copy a file and translate to native format.
- 17. a) Write a Perl script to find the largest number among three numbers.
- 18. Write a Perl script to print the multiplication tables from 1-10 using subroutines.
- 19. Write a Perl program to implement the following list of manipulating functions
 - a. Shift
 - b. Unshift
 - c. Push
- 20. a) Write a Perl script to substitute a word, with another word in a string.
- 21. b) Write a Perl script to validate IP address and email address.
- 22. Write a Perl script to print the file in reverse order using command line arguments

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- 1. The World of Scripting Languages, David Barron, Wiley Publications.
- 2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly
- 3. "Programming Ruby" The Pramatic Programmers guide by Dabve Thomas Second edition.

- 1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J.Lee and B. Ware (Addison Wesley) Pearson Education.
- 2. Perl by Example, E. Quigley, Pearson Education.
- 3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
- 4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
- 5. Perl Power, J. P. Flynt, Cengage Learning.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

MOBILE APPLICATION DEVELOPMENT LAB (Professional Elective – III)

B.Tech. III Year II Sem.

LTPC 0021

Prerequisites: --- NIL---Course Objectives:

- To learn how to develop Applications in an android environment.
- To learn how to develop user interface applications.
- To learn how to develop URL related applications.

Course Outcomes:

- Understand the working of Android OS Practically.
- Develop user interfaces.
- Develop, deploy and maintain the Android Applications.

List of Experiments:

- 1. Create an Android application that shows Hello + name of the user and run it on an emulator.
 - (b) Create an application that takes the name from a text box and shows hello message along with the name entered in the text box, when the user clicks the OK button.
- 2. Create a screen that has input boxes for User Name, Password, Address, Gender (radio buttons for male and female), Age (numeric), Date of Birth (Datepicker), State (Spinner) and a Submit button. On clicking the submit button, print all the data below the Submit Button. Use (a) Linear Layout (b) Relative Layout and (c) Grid Layout or Table Layout.
- 3. Develop an application that shows names as a list and on selecting a name it should show the details of the candidate on the next screen with a "Back" button. If the screen is rotated to landscape mode (width greater than height), then the screen should show list on left fragment and details on the right fragment instead of the second screen with the back button. Use Fragment transactions and Rotation event listeners.
- 4. Develop an application that uses a menu with 3 options for dialing a number, opening a website and to send an SMS. On selecting an option, the appropriate action should be invoked using intents.
- 5. Develop an application that inserts some notifications into Notification area and whenever a notification is inserted, it should show a toast with details of the notification.
- 6. Create an application that uses a text file to store usernames and passwords (tab separated fields and one record per line). When the user submits a login name and password through a screen, the details should be verified with the text file data and if they match, show a dialog saying that login is successful. Otherwise, show the dialog with a Login Failed message.
- 7. Create a user registration application that stores the user details in a database table.
- 8. Create a database and a user table where the details of login names and passwords are stored. Insert some names and passwords initially. Now the login details entered by the user should be verified with the database and an appropriate dialog should be shown to the user.
- 9. Create an admin application for the user table, which shows all records as a list and the admin can select any record for edit or modify. The results should be reflected in the table.
- 10. Develop an application that shows all contacts of the phone along with details like name, phone number, mobile number etc.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 11. Create an application that saves user information like name, age, gender etc. in shared preference and retrieves them when the program restarts.
- 12. Create an alarm that rings every Sunday at 8:00 AM. Modify it to use a time picker to set alarm time.

.TEXT BOOKS:

- 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012.
- 2. Android Application Development for Java Programmers, James C Sheusi, Cengage, 2013.

REFERENCE BOOK:

1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SOFTWARE TESTING METHODOLOGIES LAB (Professional Elective – III)

B.Tech. III Year II Sem.

L T P C 0 0 2 1

Prerequisites

• A basic knowledge of programming.

Course Objectives

- To provide knowledge of software testing methods.
- To develop skills in automation of software testing and software test automation management using the latest tools.

Course Outcomes

- Design and develop the best test strategies in accordance with the development model.
- Design and develop GUI, Bitmap and database checkpoints
- Develop database checkpoints for different checks
- Perform batch testing with and without parameter passing

List of Experiments

- 1. Recording in context sensitive mode and analog mode
- 2. GUI checkpoint for single property
- 3. GUI checkpoint for single object/window
- 4. GUI checkpoint for multiple objects

5.

- a. Bitmap checkpoint for object/window
- b. Bitmap checkpoint for screen area
- 6. Database checkpoint for Default check
- 7. Database checkpoint for custom check
- 8. Database checkpoint for runtime record check

9.

- a. Data driven test for dynamic test data submission
- b. Data driven test through flat files
- c. Data driven test through front grids
- d. Data driven test through excel test
- e. Batch testing without parameter passing
- f. Batch testing with parameter passing
- 10. Data driven batch
- 11. Silent mode test execution without any interruption
- 12. Test case for calculator in windows application

TEXT BOOKS

- 1. Software Testing techniques, Baris Beizer, 2nd Edition, Dreamtech.
- 2. Software Testing Tools, Dr. K.V.K.K.Prasad, Dreamtech.

- 1. The craft of software testing, Brian Marick, Pearson Education.
- 2. Software Testing Techniques SPD(Oreille)
- 3. Software Testing in the Real World, Edward Kit, Pearson.
- 4. Effective methods of Software Testing, Perry, John Wiley.
- 5. Art of Software Testing, Meyers, John Wiley.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

CLOUD COMPUTING LAB

B.Tech. III Year II Sem.

LTPC 0021

Prerequisites:

- 1. A Lab on "Computer Networks"
- **2.** A Lab on "Operating Systems

Course Objective:

- Understand the working of the AWS Cloud Services
- Become familiar with Amazon's storage offerings

Course Outcomes:

- Identify the main concepts, key technologies, strengths and limitations of cloud computing.
- Illustrate the key and enabling technologies that help in the development of the cloud.

List of Experiments

- 1. Establish an AWS account. Use the AWS Management Console to launch an EC2 instance and connect to it.
- 2. Create your First AWS S3 Bucket and Upload Content to Bucket and Manage their Access and Create Static Website using AWS S3.
- 3. Create and configure storage services and upload files and objects using Amazon EBS
- 4. Create and configure storage services and upload files and objects using Amazon EFS
- 5. Creation of Amazon Lex Chat bot
- 6. Creation of S3 bucket and trigger by lambda to dynamo DB and make it available with Cloud Front.
- 7. Pull the image from Docker to EC2 Instance and access it publicly.
- 8. Creation of Dynamo DB.
- 9. Create loosely coupled services with Amazon SQS and Amazon SNS to process data received from the applications.
- 10. Create image recognition capability application using AWS Amazon Recognition.

TEXT BOOK:

- 1. Essentials of Cloud Computing- k. Chandrasekharan, 2014.
- 2. Cloud computing principles and paradigms by Rajkumar Buyya, 2013.

- 1. Learn AWS Serverless Computing: A beginner's guide to using AWS Lambda, Amazon API Gateway, and services from Amazon Web Services by Scott Patterson, 2019.
- 2. Learning Amazon Web Services (AWS): A Hands-On Guide to the Fundamentals of AWS Cloud by Mark Wilkins, 2019
- 3. Microsoft Azure For Dummies 1st Edition by Timothy L. Warner, 2020

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

LOGICAL REASONING - II

B.Tech. III Year II Sem.

L TPC 0021

Quantitative Aptitude

- **1. Permutation and Combinations:** Fundamental Principle of Counting, Counting Methods, Definition of permutation, Linear Permutations, Rank of a word, Circular Permutations, Definition of Combinations, Problems on Combinations.
- **2. Probability:** Definitions of Probability, Addition and Multiplication theorem. Deductions: Introduction, expressing different types of statements using Venn diagrams, Definition of complimentary pairs, finding the conclusions using Venn diagrams for two and more statements.
- **3. Number system:** Classification of numbers, Divisibility rules, Finding the units digit, Finding remainders in divisions involving higher powers, LCM and HCF Models, Decimal fractions, Simplifications, Square Roots & Cube Roots, Surds and Indices.
- **4. Allegation and Mixture:** Definition of allegation, mean price, rules of allegation on quantity and cost price, diagrammatic explanation, removal and replacement.

Logical Reasoning:

- 5. **Sitting Arrangement:** Problems on Linear arrangement, Problems on Circular arrangement, Problems on Double line-up, Problems on Selections, problems on Comparisons. Coding and decoding: Coding using same set of letters, Coding using different set of letters, Coding into a number Comparison & Elimination.
- 6. **Number and letter Series:** Difference series, Product series, Squares series, Cubes series, Alternate series, Combination series, miscellaneous series, Place values of letters.
- 7. **Day sequence/Calendars:** Definition of a Leap Year, Finding the number of Odd days, framing the year code for centuries, finding the day of any random calendar date.
- 8. **Alphabet Test:** Alphabetical order of verbs, letter-word problems, rule-detection, alphabetical quibble, word formation.
- 9. **Direction sense Test:** Direction from the initial point: directions, cardinal directions, problems on distances, problems on clocks, problems on angles, problems on shadows
- **10. Clocks**: Finding the angle when the time is given, Finding the time when the angle is known, Relation between Angle, Minutes and Hours, Exceptional cases in clocks.
- **11. Cubes:** Basics of a cube, finding the minimum number of cuts when the number of identical pieces are given, Finding the maximum number of pieces when cuts are given, Problems on painted cubes of same and different colours, Problems on cuboids, Problems on painted cuboids, Problems on Dice.
- 12. **Data Sufficiency:** Different models in Data Sufficiency, Problems on Data sufficiency, Problems on data redundancy. Data Interpretation: Problems on tabular form, Problems on Line Graphs, Problems on Bar Graphs, Problems on Pie Charts.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- 1. A modern approach to Logical reasoning, R S Agarwal, S. Chand Publications, 2013.
- 2. Quantitative Aptitude for Competitive Examinations, Dinesh Khattar. Pearson Education, 4 th Edition, 2019.

- 1. Quantitative Aptitude and Reasoning, R. V. Praveen, PHI Learning Private Ltd, 2nd Edition, 2013.
- 2. Quantitative Aptitude for competitive examinations, Abhijith Guha, McGraw Hill Education, 6th Edition, 2017.
- 3. Analytical & Logical Reasoning, Peeyush Bhardwaj, Arihant Publications, 4th Edition, 2015. 4. Logical Reasoning for the CAT, Arun Sharma, McGraw Hill Education, 2nd Edition 2014.
- 4. A Modern Approach to Logical reasoning, R S Agarwal, S .Chand publications, 2013.
- 5. Quantitative Aptitude for Competitive examinations, Dinesh Khattar, Pearson Education 4th Editin, 2019.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

INDUSTRIAL ORIENTED MINI PROJECT/INTERNSHIP/SKILL DEVELOPMENT COURSE (BIG DATA-SPARK)

B.Tech. III Year II Sem.

LTPC 0021

Course Objectives:

• The main objective of the course is to process Big Data with advance architecture like spark and streaming data in Spark

Course Outcomes:

- Develop MapReduce Programs to analyze large dataset Using Hadoop and Spark
- Write Hive queries to analyze large dataset Outline the Spark Ecosystem and its components
- Perform the filter, count, distinct, map, flatMap RDD Operations in Spark.
- Build Queries using Spark SQL
- Apply Spark joins on Sample Data Sets
- Make use of sqoop to import and export data from hadoop to database and vice-versa

List of Experiments:

- 1. To Study of Big Data Analytics and Hadoop Architecture
 - i. know the concept of big data architecture
 - ii. know the concept of Hadoop architecture
- 2. Loading DataSet in to HDFS for Spark Analysis Installation of Hadoop and cluster management
 - i. Installing Hadoop single node cluster in ubuntu environment
 - ii. Knowing the differencing between single node clusters and multi-node clusters
 - iii. Accessing WEB-UI and the port number
 - iv. Installing and accessing the environments such as hive and sqoop
- 3. File management tasks & Basic linux commands
 - i. Creating a directory in HDFS
 - ii. Moving forth and back to directories
 - iii. Listing directory contents
 - iv. Uploading and downloading a file in HDFS
 - v. Checking the contents of the file
 - vi. Copying and moving files
 - vii. Copying and moving files between local to HDFS environment
 - viii. Removing files and paths
 - ix. Displaying few lines of a file
 - x. Display the aggregate length of a file
 - xi. Checking the permissions of a file
 - xii. Zipping and unzipping the files with & without permission pasting it to a location
 - xiii. Copy, Paste command
- 4. Map-reducing
 - i. Definition of Map-reduce
 - ii. Its stages and terminologies
 - iii. Word-count program to understand map-reduce (Mapper phase, Reducer phase, Driver code)
- 5. Implementing Matrix-Multiplication with Hadoop Map-reduce

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- 6. Compute Average Salary and Total Salary by Gender for an Enterprise.
- 7. (i) Creating hive tables (External and internal)
 - (ii) Loading data to external hive tables from sql tables(or)Structured c.s.v using scoop
 - (iii) Performing operations like filterations and updations
 - (iv) Performing Join (inner, outer etc)
 - (v) Writing User defined function on hive tables
- 8. Create a sql table of employees Employee table with id,designation Salary table (salary ,dept id) Create external table in hive with similar schema of above tables,Move data to hive using scoop and load the contents into tables,filter a new table and write a UDF to encrypt the table with AES-algorithm, Decrypt it with key to show contents
- 9. (i) Pyspark Definition(Apache Pyspark) and difference between Pyspark, Scala, pandas
 - (ii) Pyspark files and class methods
 - (iii) get(file name)
 - (iv) get root directory()
- 10. Pyspark -RDD'S
 - (i) what is RDD's?
 - (ii)ways to Create RDD
 - (iii) parallelized collections
 - (iv) external dataset
 - (v)existing RDD's
 - (vi) Spark RDD's operations (Count, foreach(), Collect, join, Cache()
- 11. Perform pyspark transformations
 - (i) map and flatMap
 - (ii)to remove the words, which are not necessary to analyze this text.
 - (iii) groupBy
 - (iv) What if we want to calculate how many times each word is coming in corpus?
 - (v)How do I perform a task (say count the words 'spark' and 'apache' in rdd3) separatly on each partition and get the output of the task performed in these partition?
 - (vi) unions of RDD
 - (vii) join two pairs of RDD Based upon their key
- 12. Pyspark sparkconf-Attributes and applications
 - (i) What is Pyspark spark conf ()
 - (ii) Using spark conf create a spark session to write a dataframe to read details in a c.s.v and later move that c.s.v to another location

TEXT BOOKS:

- 1. Spark in Action, Marko Bonaci and Petar Zecevic, Manning.
- 2. PySpark SQL Recipes: With HiveQL, Dataframe and Graphframes, Raju Kumar Mishra and Sundar Rajan Raman, Apress Media.

WEB LINKS:

- 1. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013301505844518 91225182_shared/overview
- 2. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012583881196388 35242_shared/overview
- 3. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012605268423008 2561692 shared/overview

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENVIRONMENTAL SCIENCE

B.Tech. III Year II Sem.

LTPC 3000

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

Course Outcomes:

• Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II

Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT - III

Biodiversity and Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management. Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Issues and Global Efforts:** Climate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-GoI Initiatives.

UNIT - V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio- economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan. (EMP). **Towards Sustainable Future:** Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

- 1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.
- 6. Introduction to
- 7. Environmental Science by Y. Anjaneyulu, BS. Publications.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

CRYPTOGRAPHY AND NETWORK SECURITY

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various cryptographic algorithms.
- Understand the basic categories of threats to computers and networks
- Describe public-key cryptosystem.
- Describe the enhancements made to IPv4 by IPSec
- Understand Intrusions and intrusion detection

Course Outcomes:

- Student will be able to understand basic cryptographic algorithms, message and web authentication and security issues.
- Ability to identify information system requirements for both of them such as client and server.
- Ability to understand the current legal issues towards information security.

UNIT - I

Security Concepts: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security **Cryptography Concepts and Techniques:** Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

UNIT - II

Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4.

Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Elgamal Cryptography, Diffie-Hellman Key Exchange, Knapsack Algorithm.

UNIT - III

Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512), **Message authentication codes:** Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys, Kerberos, X.509 Authentication Service, Public – Key Infrastructure

UNIT IV: Web Security

Web Security Considerations, Secure Electronic Transactions, Characteristics, Types of Firewalls, Placement of Firewalls, Firewall Configuration, Next generation Firewalls, Trusted systems.

UNIT V: Malware, Data Stolen with Social Engineering

Malware and its types, Vulnerabilities and exploits, Protection against from all Malware, Key Loggers and its types, Back Doors,

Hacking (Effects, Types, Purpose, advantages and disadvantages), Types of Hackers, Types of Cybercrimes, Types of Data Stolen and its counter measures, Social Engineering and Types

TEXT BOOKS:

- 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition
- 2. Cryptography and Network Security: Atul Kahate, Mc Graw Hill, 3rd Edition

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, Mc Graw Hill, 3rd Edition
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DEV OPs

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Pre-Requisites:

1. Software Engineering

Course Objectives:

- Understand the skill sets and high-functioning teams involved in Agile, DevOps and related methods to reach a continuous delivery capability.
- Implement automated system update and DevOps lifecycle.

Course Outcomes:

- Understand the various components of DevOps environment.
- Identify Software development models and architectures of DevOps
- Use different project management and integration tools.
- Select an appropriate testing tool and deployment model for project.

UNIT-I

Introduction to DevOps:

Introduction, Agile development model, DevOps and ITIL. DevOps process and Continuous Delivery, Release management, Scrum, Kanban, delivery pipeline, identifying bottlenecks.

UNIT-II

Software development models and DevOps:

DevOps Lifecycle for Business Agility, DevOps, and Continuous Testing. DevOps influence on Architecture: Introducing software architecture, The monolithic scenario, Architecture rules of thumb, The separation of concerns, Handling database migrations, Micro services and the data tier, DevOps, architecture, and resilience.

UNIT-III

Introduction to project management:

The need for source code control, the history of source code management, Roles and code, source code management system and migrations, shared authentication, Hosted Git servers, Different Git server implementations, Docker intermission, Gerrit, The pull request model, GitLab.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

Integrating the system:

Build systems, Jenkins build server, Managing build dependencies, Jenkins plugins, and file system layout, The host server, Build slaves, Software on the host, Triggers, Job chaining and build pipelines, Build servers and infrastructure as code, Building by dependency order, Build phases, Alternative build servers, Collating quality measures.

UNIT-V

Testing Tools and Deployment:

Various types of testing, Automation of testing Pros and cons, Selenium - Introduction, Selenium features, JavaScript testing, Testing backend integration points, Test-driven development, REPL-driven development. Deployment of the system: Deployment systems, Virtualization stacks, code execution at the client, Puppet master and agents, Ansible, Deployment tools: Chef, Salt Stack and Docker.

TEXT BOOKS:

1. Joakim Verona., Practical DevOps, Packt Publishing, 2016.

- 1. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications.
- 2. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

GRAPH THEORY (Professional Elective – IV)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

• Understanding graphs, trees, connected paths, applications of trees and graphs.

Course Outcomes:

- Know some important classes of graph theoretic problems;
- Prove central theorems about trees, matching, connectivity, coloring and planar graphs;
- Describe and apply some basic algorithms for graphs;
- Use graph theory as a modeling tool.

UNIT - I

Introduction-Discovery of graphs, Definitions, Subgraphs, Isomorphic graphs, Matrix representations of graphs, Degree of a vertex, Directed walks, paths and cycles, Connectivity in digraphs, Eulerian and Hamilton digraphs, Eulerian digraphs, Hamilton digraphs, Special graphs, Complements, Larger graphs from smaller graphs, Union, Sum, Cartesian Product, Composition, Graphic sequences, Graph theoretic model of the LAN problem, Havel-Hakimi criterion, Realization of a graphic sequence.

UNIT - II

Connected graphs and shortest paths - Walks, trails, paths, cycles, Connected graphs, Distance, Cut-vertices and cut-edges, Blocks, Connectivity, Weighted graphs and shortest paths, Weighted graphs, Dijkstra"s shortest path algorithm, Floyd-Warshall shortest path algorithm.

UNIT - III

Trees- Definitions and characterizations, Number of trees, Cayley's formula, Kircho amatrix-tree theorem, Minimum spanning trees, Kruskal's algorithm, Prim's algorithm, Special classes of graphs, Bipartite Graphs, Line Graphs, Chordal Graphs, Eulerian Graphs, Fleury's algorithm, Chinese Postman problem, Hamilton Graphs, Introduction, Necessary conditions and sufficient conditions.

UNIT-IV

Independent sets coverings and matchings—Introduction, Independent sets and coverings: basic equations, Matchings in bipartite graphs, Hall"s Theorem, K"onig"s Theorem, Perfect matchings in graphs, Greedy and approximation algorithms.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Vertex Colorings- Basic definitions, Cliques and chromatic number, Mycielski"s theorem, Greedy coloring algorithm, Coloring of chordal graphs, Brooks theorem, Edge Colorings, Introduction and Basics, Gupta-Vizing theorem, Class-1 and Class-2 graphs, Edge-coloring of bipartite graphs, Class-2 graphs, Hajos union and Class-2 graphs, A scheduling problem and equitable edge-coloring.

TEXT BOOKS:

- 1. J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics. Springer, 1st edition, 2008.
- 2. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.

- 1. Lecture Videos: http://nptel.ac.in/courses/111106050/13
- 2. Introduction to Graph Theory, Douglas B. West, Pearson.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DISTRIBUTED DATABASES (Professional Elective – IV)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Prerequisites:

1. A course on "Database Management Systems"

Course Objectives:

- The purpose of the course is to enrich the previous knowledge of database systems and expose the need for distributed database technology to confront the deficiencies of the centralized database systems.
- Introduce basic principles and implementation techniques of distributed database systems. Equip students with principles and knowledge of parallel and object-oriented databases. Topics include distributed DBMS architecture and design; query processing and optimization; distributed transaction management and reliability; parallel and object database management systems.

Course Outcomes:

- Understand theoretical and practical aspects of distributed database systems.
- Study and identify various issues related to the development of distributed database systems.
- Understand the design aspects of object-oriented database systems and related developments.

UNIT - I

Introduction; Distributed Data Processing, Distributed Database System, Promises of DDBSs,Problem areas.

Distributed DBMS Architecture: Architectural Models for Distributed DBMS, DDMBS Architecture. **Distributed Database Design**: Alternative Design Strategies, Distribution Design issues, Fragmentation, Allocation.

UNIT - II

Query processing and decomposition: Query processing objectives, characterization of query processors, layers of query processing, query decomposition, localization of distributed data. Distributed query Optimization: Query optimization, centralized query optimization, distributed query optimization algorithms.

UNIT - III

Transaction Management: Definition, properties of transaction, types of transactions, distributed concurrency control: serializability, concurrency control mechanisms & algorithms, time - stamped & optimistic concurrency control Algorithms, deadlock Management.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

Distributed DBMS Reliability: Reliability concepts and measures, fault-tolerance in distributed systems, failures in Distributed DBMS, local & distributed reliability protocols, site failures and network partitioning.

Parallel Database Systems: Parallel database system architectures, parallel data placement, parallel query processing, load balancing, database clusters.

UNIT - V

Distributed object Database Management Systems: Fundamental object concepts and models, object distributed design, architectural issues, object management, distributed object storage, object query Processing.

Object Oriented Data Model: Inheritance, object identity, persistent programming languages, persistence of objects, comparison OODBMS and ORDBMS

TEXT BOOKS:

- 1. M. Tamer OZSU and Patuck Valduriez: Principles of Distributed Database Systems, Pearson Edn. Asia, 2001.
- 2. Stefano Ceri and Giuseppe Pelagatti: Distributed Databases, McGraw Hill.

REFERENCE BOOK:

1. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom: "Database Systems: The Complete Book", Second Edition, Pearson International Edition.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

QUANTUM COMPUTING (Professional Elective – IV)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives

- To introduce the fundamentals of quantum computing
- The problem-solving approach using finite dimensional mathematics

Course Outcomes

- Understand basics of quantum computing
- Understand physical implementation of Qubit
- Understand Quantum algorithms and their implementation
- Understand The Impact of Quantum Computing on Cryptography

UNIT - I

History of Quantum Computing: Importance of Mathematics, Physics and Biology. Introduction to Quantum Computing: Bits Vs Qubits, Classical Vs Quantum logical operations

UNIT - II

Background Mathematics: Basics of Linear Algebra, Hilbert space, Probabilities and measurements. Background Physics: Paul's exclusion Principle, Superposition, Entanglement and super-symmetry, density operators and correlation, basics of quantum mechanics, Measurements in bases other than computational basis. Background Biology: Basic concepts of Genomics and Proteomics (Central Dogma)

UNIT - III

Qubit: Physical implementations of Qubit. Qubit as a quantum unit of information. The Bloch sphere Quantum Circuits: single qubit gates, multiple qubit gates, designing the quantum circuits. Bell states.

UNIT - IV

Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor's factorization algorithm, Grover's search algorithm.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Noise and error correction: Graph states and codes, Quantum error correction, fault-tolerant computation. Quantum Information and Cryptography: Comparison between classical and quantum information theory. Quantum Cryptography, Quantum teleportation

TEXT BOOKS:

1. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge

- 1. Quantum Computing for Computer Scientists by Noson S. Yanofsky and Mirco A. Mannucci
- 2. Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II
- 3. Basic Tools and Special Topics, World Scientific. Pittenger A. O., An Introduction to Quantum Computing Algorithms

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

COMPUTER GRAPHICS (Professional Elective – IV)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Prerequisites

1. Programming for problem solving and Data Structures

Course Objectives

• Provide the basics of graphics systems including Points and lines, line drawing algorithms, 2D, 3D objective transformations

Course Outcomes

- Explore applications of computer graphics
- Understand 2D, 3D geometric transformations and clipping algorithms
- Understand 3D object representations, curves, surfaces, polygon rendering methods, color models
- Analyze animation sequence and visible surface detection methods

UNIT - I

Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random-scan systems, graphics monitors and work stations and input devices

Output primitives: Points and lines, line drawing algorithms (DDA and Bresenham's Algorithm) circle- generating algorithms and ellipse - generating algorithms

Polygon Filling: Scan-line algorithm, boundary-fill and flood-fill algorithms

UNIT-II

- **2-D geometric transformations:** Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems
- **2-D viewing:** The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, clipping operations, point clipping, Line clipping-Cohen Sutherland algorithms, Polygon clipping-Sutherland Hodgeman polygon clipping algorithm.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - III

3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces, Polygon rendering methods, color models and color applications.

UNIT - IV

- **3-D Geometric transformations:** Translation, rotation, scaling, reflection and shear transformations, composite transformations.
- **3-D viewing:** Viewing pipeline, viewing coordinates, projections, view volume and general projection transforms and clipping.

UNIT - V

Computer animation: Design of animation sequence, general computer animation functions, raster animations, computer animation languages, key frame systems, motion specifications.

Visible surface detection methods: Classification, back-face detection, depth-buffer method, BSP- tree method, area sub-division method and octree method.

TEXT BOOKS:

1. "Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson Education

- 1. Procedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2nd edition.
- 2. Principles of Interactive Computer Graphics", Neuman and Sproul, TMH.
- 3. Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer.
- 4. "Computer Graphics Principles & practice", second edition in C, Foley, Van Dam, Feiner and Hughes, Pearson Education.
- 5. Computer Graphics, Steven Harrington, TMH.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATA MINING (Professional Elective - IV)

B.Tech. IV Year I Sem

L T P C 2 0 0 2

Pre-Requisites:

• A course on "Database Management Systems" • Knowledge of probability and statistics Course

Objectives:

- It presents methods for mining frequent patterns, associations, and correlations.
- It then describes methods for data classification and prediction, and data-clustering approaches.
- It covers mining various types of data stores such as spatial, textual, multimedia, streams. Course Outcomes:
- Ability to understand the types of the data to be mined and present a general classification of tasks and primitives to integrate a data mining system.
- Apply preprocessing methods for any given raw data.
- Extract interesting patterns from large amounts of data.
- Discover the role played by data mining in various fields.
- Choose and employ suitable data mining algorithms to build analytical applications
- Evaluate the accuracy of supervised and unsupervised models and algorithms.

UNIT - I

Data Mining: Data—Types of Data—, Data Mining Functionalities—Interestingness Patterns Classification of Data Mining systems— Data mining Task primitives—Integration of Data mining system with a Data warehouse—Major issues in Data Mining—Data Preprocessing.

UNIT - II

Association Rule Mining: Mining Frequent Patterns—Associations and correlations — Mining Methods—Mining Various kinds of Association Rules—Correlation Analysis—Constraint based Association mining. Graph Pattern Mining, SPM.

UNIT - III

Classification: Classification and Prediction – Basic concepts–Decision tree induction–Bayesian classification, Rule–based classification, Lazy learner.

UNIT - IV

Clustering and Applications: Cluster analysis—Types of Data in Cluster Analysis—Categorization of Major Clustering Methods—Partitioning Methods, Hierarchical Methods—Density—Based Methods, Grid—Based Methods, Outlier Analysis.

UNIT - V

Advanced Concepts: Basic concepts in Mining data streams—Mining Time—series data—Mining sequence patterns in Transactional databases—Mining Object—Spatial—Multimedia—Text and Web data — Spatial Data mining—Multimedia Data mining—Text Mining—Mining the World Wide Web.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- 1. Data Mining Concepts and Techniques Jiawei Han & Micheline Kamber, 3rd Edition Elsevier.
- 2. Data Mining Introductory and Advanced topics Margaret H Dunham, PEA.

REFERENCE BOOK:

1. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques (Second Edition), Morgan Kaufmann, 2005.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ADVANCED ALGORITHMS (Professional Elective – V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Pre-Requisites: Algorithm Design and Analysis

Course Objectives:

- To familiarize advanced methods on analysis of algorithms.
- To familiarize with graphs and algorithms related shortest path
- To understand matrix computations and modulo representations
- To introduce randomized, approximation algorithms and computational complexity topics

Course Outcomes:

- Familiarize with advanced methods on analysis of algorithms
- Familiarize with the graphs, graph matching and shortest path algorithms
- Understand matrix computations and modulo representations
- Understand randomized, approximation algorithms and computational complexity topics

UNIT-I

Introduction to Algorithms, Classification of Algorithms, Asymptotic Analysis, Introduction to Recurrence equations - Linear recurrences, Non-linear recurrences, Formulation of recurrence equations, techniques for solving recurrence equations, Solving recurrence equations using polynomial reduction, Master's theorem

Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkstra's), depth-first search and computation of strongly connected components, Multistage Graph, topological sorting

UNIT - II

Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path, Bipartite matching problem

Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set, Optimal tree problems- optimal merge, huffman coding, tree vertex splitting problem. **Shortest Path in Graphs:** Floyd-Warshall algorithm, Travelling Sales Person Problem and introduction to dynamic programming paradigm. Optimal Graph Problems - Minimum Spanning Tree, Single source shortest path.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - III

Flow-Networks: Maxflow - mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm.

Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, Chain Matrix Multiplication, Matrix operations — Gaussian Elimination method, LUP-decomposition, Crout's method of decomposition, inverse of a triangular matrix,

UNIT-IV

Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation, interpolation problem. Multiplication of long integers by using Divide and Conquer paradigm, Schonhage-Strassen's Integer Multiplication algorithm.

String Algorithms: Naïve String, Rabin Karp, KMP, Boyer Moore, Harspool algorithms

UNIT - V

Basics of Computational Complexity: Introduction to computational complexity, complexity classes, Satisfiability problem and Cook's theorem, Examples of NP- Complete problems

Randomized algorithms: Introduction, Types of Randomized algorithms, Example of Randomized algorithms.

Approximation algorithms: Introduction, Types of Approximation algorithms, Examples of pproximation algorithms

TEXT BOOK:

1. Design and Analysis of Algorithms, S. Sridhar, Oxford University Press.

- 1. Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein.
- 2. The Design and Analysis of Computer Algorithms, Aho, Hopcroft, Ullman.
- 3. Algorithm Design, Kleinberg and Tardos.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

AGILE METHODOLOGY (Professional Elective – V)

B.Tech. IV Year I Sem.

LTPC

3 0 0 3

Course Objectives:

• Knowledge on concepts of agile development, releasing, planning and developing

Course Outcomes:

- Identify basic concepts of agile methodology and Extreme programming
- Analyze real customer involvement in collaboration
- Discuss risk management and iteration planning
- Understanding incremental requirements, refactoring, incremental design and architecture

UNIT - I

Introduction Extreme Programming (XP) - Agile Development

Why Agile?, Understanding Success, Beyond Deadlines, Importance of Organizational Success, Introduction to Agility, Agile methods-Scrum and XP, Manifesto for Agile Software Development, Principles of Agile Process. Understanding XP (Extreme Programming) - XP life cycle, XP team, XP Concepts, Adopting XP - Knowing whether XP is suitable, Implementing XP, assessing Agility, Practicing XP - Thinking, Pair Programming, Energized work, Informative Workspace, Root cause Analysis, Retrospectives.

UNIT - II

Collaborating

Trust, Sit together, Real customer involvement, Ubiquitous language, Stand-Up meetings, coding standards, Iteration demo, Reporting.

UNIT - III

Releasing

Bugfree Release, Version Control, Ten-Minute Build, continuous integration, Collective ownership and Documentation.

UNIT - IV

Planning

Version, Release Planning, The Planning Game, Risk Management, Iteration Planning, Slack, Stories, and Estimating

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Developing

Incremental requirements, Customer tests, Test driven development, Refactoring, Incremental design and architecture, spike solutions, Performance optimization, Exploratory testing.

TEXT BOOK:

1. The art of Agile Development, James Shore and Shane Warden, 11th Indian Reprint, O'Reilly, 2018.

- 1. Learning Agile, Andrew Stellman and Jennifer Greene, O'Reilly, 4th Indian Reprint, 2018
- 2. Practices of an Agile Developer, Venkat Subramaniam and Andy Hunt, SPD, 5th Indian Reprint, 2015
- 3. Agile Project Management Jim Highsmith, Pearson Low price Edition 2004

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ROBOTIC PROCESS AUTOMATION (Professional Elective - V)

B.Tech. IV Year I Sem.

LTPC

3 0 0 3

Course Objectives:

• Introduce robotic process automation, techniques of automation using UIPath RPA tool.

Course Outcomes:

- Understand the concepts of Robotic Process Automation.
- Apply the flow chart mechanism in various calculations.
- Applying UIPath tool for debugging process
- Design system managing techniques.
- Create application for process automation using UIPath tool.

UNIT - I

Robotic Process Automation: Introduction, Scope and techniques of automation, Robotic process automation, Components of RPA, RPA platforms, About UiPath

UIPath Stack Uipath Studio, Uipath Robot, Types of Robots, UiPath Orchestrator

UIPath Studio Projects, User interface

The User Interface: Task recorder, Advanced UI interactions: Input methods, Output methods

UNIT-II

Sequence, Flowchart, and Control Flow: Sequencing the workflow, Activities, Control Flow, various types of loops and decision making

Data Manipulation: Variables and scope, Collections, Arguments – Purpose and use, Data table usage with examples, File operation with step-by-step example, CSV/Excel to data table and vice versa

UNIT - III

Taking Control of the Controls: Finding and attaching windows, Finding the control, Techniques for waiting for a control, Act on controls – mouse and keyboard activities, Handling events, revisit recorder, When to use OCR, Types of OCR available, How to use OCR.

Plugins and Extensions: Terminal Plugin, SAP Automation, Citrix automation and Credential management

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

Handling User Events and Assistant Bots: Assistant bots, Monitoring system event triggers, Monitoring image and element triggers, Launching an assistant bot on a keyboard event **Exception Handling, Debugging, and Logging:** Exception handling, Common exceptions and ways to handle them, Logging and taking screenshots, Debugging techniques, Collecting crash dumps, Error reportin

UNIT - V

Managing and Maintaining the Code: Project organization, nesting workflows, Reusability of workflows, Commenting techniques, State Machine, When to use Flowcharts, State Machines, or Sequences, Using config files

Deploying and Maintaining the Bot: Publishing using publish utility, using Orchestration Server to control bots, deploy bots, License Management, Publishing and Managing updates

TEXT BOOK:

1. Learning Robotic Process Automation: Create Software robots and automate business processes with the leading RPA tool - UiPath: Create Software robots. with the leading RPA tool - UiPath Kindle Edition

REFERENCE BOOK:

1. Robotic Process Automation A Complete Guide - 2020 Edition Kindle Edition.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

BLOCKCHAIN TECHNOLOGY (Professional Elective - V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Prerequisites:

- 1. Knowledge in information security and applied cryptography.
- 2. Knowledge in Computer Networks

Course Objectives:

- To learn the fundamentals of Blockchain and various types of block chain and consensus mechanisms.
- To understand the public block chain system, Private block chain system and consortium blockchain.
- Able to know the security issues of blockchain technology.

Course Outcomes:

- Understanding concepts behind crypto currency
- Applications of smart contracts in decentralized application development
- Understand frameworks related to public, private and hybrid blockchain
- Create blockchain for different application case studies

UNIT-I

Fundamentals of Blockchain: Introduction, Origin of Blockchain, Blockchain Solution, Components of Blockchain, Block in a Blockchain, The Technology and the Future.

Blockchain Types and Consensus Mechanism: Introduction, Decentralization and Distribution, Types of Blockchain, Consensus Protocol.

Cryptocurrency – **Bitcoin, Altcoin and Token**: Introduction, Bitcoin and the Cryptocurrency, Cryptocurrency Basics, Types of Cryptocurrencies, Cryptocurrency Usage.

UNIT-II

Public Blockchain System: Introduction, Public Blockchain, Popular Public Blockchains, The Bitcoin Blockchain, Ethereum Blockchain.

Smart Contracts: Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-III

Private Blockchain System: Introduction, Key Characteristics of Private Blockchain, Need of Private Blockchain, Private Blockchain Examples, Private Blockchain and Open Source, Ecommerce Site Example, Various Commands (Instructions) in E-commerce Blockchain, Smart Contract in Private Environment, State Machine, Different Algorithms of Permissioned Blockchain, ByzantineFault, Multichain.

Consortium Blockchain: Introduction, Key Characteristics of Consortium Blockchain, Need of Consortium Blockchain, Hyperledger Platform, Overview of Ripple, Overview of Corda.

Initial Coin Offering: Introduction, Blockchain Fundraising Methods, Launching an ICO, Investing in an ICO, Pros and Cons of Initial Coin Offering, Successful Initial Coin Offerings, Evolution of ICO, ICO Platforms.

UNIT-IV

Security in Blockchain: Introduction, Security Aspects in Bitcoin, Security and Privacy Challenges of Blockchain in General, Performance and Scalability, Identity Management and Authentication, Regulatory Compliance and Assurance, Safeguarding Blockchain Smart Contract (DApp), Security Aspects in Hyperledger Fabric.

Applications of Blockchain: Introduction, Blockchain in Banking and Finance, Blockchain in Education, Blockchain in Energy, Blockchain in Healthcare, Blockchain in Real-estate, Blockchain In Supply Chain, The Blockchain and IoT. Limitations and Challenges of Blockchain.

UNIT-V

Blockchain Case Studies: Case Study 1 – Retail, Case Study 2 – Banking and Financial Services, Case Study 3 – Healthcare, Case Study 4 – Energy and Utilities.

Blockchain Platform using Python: Introduction, Learn How to Use Python Online Editor, Basic Programming Using Python, Python Packages for Blockchain.

Blockchain platform using Hyperledger Fabric: Introduction, Components of Hyper ledger Fabric Network, Chain codes from Developer.ibm.com, Blockchain Application Using Fabric Java SDK.

TEXT BOOK:

1. "Blockchain Technology", Chandramouli Subramanian, Asha A. George, Abhilasj K A and Meena Karthikeyan, Universities Press.

- 1. Michael Juntao Yuan, Building Blockchain Apps, Pearson, India.
- 2. Blockchain Blueprint for Economy, Melanie Swan, SPD O'reilly.
- 3. Blockchain for Business, Jai Singh Arun, Jerry Cuomo, Nitin Gaur, Pearson.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SOFTWARE PROCESS & PROJECT MANAGEMENT (Professional Elective – V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- To acquire knowledge on software process management.
- To acquire managerial skills for software project development.
- To understand software economics.

Course Outcomes:

- Understand the software process change, assessment, project plans and Quality Standards.
- Examine the life cycle phases, artifacts, workflows and checkpoints of a process.
- Design and develop software products using conventional and modern principles of software project management.
- Identify the new project management process and practices.

UNIT - I

Software Process Maturity

Software maturity Framework, Principles of Software Process Change, Software Process Assessment, The Initial Process, The Repeatable Process, The Defined Process, The Managed Process, The Optimizing Process, Process Reference Models Capability Maturity Model (CMM), CMMI, PCMM, PSP, TSP).

UNIT - II

Software Project Management Renaissance

Conventional Software Management, Evolution of Software Economics, Improving Software Economics, Life-Cycle Phases and Process artifacts

Engineering and Production stages, inception phase, elaboration phase, construction phase, transition phase, artifact sets, management artifacts, engineering artifacts and pragmatic artifacts, model-based software architectures.

UNIT - III

Workflows and Checkpoints of process

Software process workflows, Iteration workflows, Major milestones, minor milestones, periodic status assessments, Process Planning Work breakdown structures, Planning guidelines, cost and schedule estimating process, iteration planning process, Pragmatic planning.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Project Organizations

Line-of- business organizations, project organizations, evolution of organizations, process automation. Project Control and process instrumentation, The seven-core metrics, management indicators, quality indicators, life-cycle expectations, Pragmatic software metrics, metrics automation.

UNIT - V

CCPDS-R Case Study and Future Software Project Management Practices, Modern Project Profiles, Next-Generation software Economics, Modern Process Transitions.

TEXT BOOKS:

- 1. Managing the Software Process, Watts S. Humphrey, Pearson Education
- 2. Software Project Management, Walker Royce, Pearson Education

- 1. An Introduction to the Team Software Process, Watts S. Humphrey, Pearson Education, 2000
- 2. Process Improvement essentials, James R. Persse, O'Reilly, 2006
- 3. Software Project Management, Bob Hughes & Mike Cotterell, fourth edition, TMH, 2006
- 4. Applied Software Project Management, Andrew Stellman & Jennifer Greene, O'Reilly, 2006.
- 5. Software Engineering Project Management, Richard H. Thayer & Edward Yourdon, 2nd edition, Wiley India, 2004.
- 6. Agile Project Management, Jim Highsmith, Pearson education, 2004.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

PYTHON PROGRAMMING (Open Elective - II)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- Learn Syntax and Semantics and create Functions in Python.
- Handle Strings and Files in Python.
- Understand Lists, Dictionaries and Regular expressions in Python.
- Build Database Applications in Python.
- Construct data visualization by using various Python modules.

Course Outcomes:

- Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
- Demonstrate proficiency in handling Strings and File Systems.
- Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
- Implement exemplary applications related to Databases in Python.
- Implement the concepts of data visualization in Python.

UNIT - I

Python Basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, Unsupported Types

Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions, Related Modules

Sequences - Strings, Lists, and Tuples, Mapping and Set Types

UNIT - II

FILES: File Objects, File Built-in Function, File Built-in Attributes, Standard Files, Command-line Arguments

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management,

*Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, *Creating Exceptions

Modules: Importing Modules, Importing Module Attributes, Module Built-in Functions, Packages

UNIT - III

Regular Expressions: Introduction, Special Symbols and Characters, Res and Python

Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and the Global Interpreter Lock, Thread Module, Threading Module, Related Modules

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Database Programming: Introduction, Python Database Application Programmer's Interface (DB-API), Python- Sqlite Connectivity, Object Relational Managers (ORMs), Related Modules

UNIT - V

Numpy, Pandas, Sklearn,, Matplotlib, Seaborn

TEXT BOOK:

1. Core Python Programming, Wesley J. Chun, Second Edition, Pearson.

- 5. Think Python, Allen Downey, Green Tea Press
- 6. Introduction to Python, Kenneth A. Lambert, Cengage
- 7. Python Programming: A Modern Approach, Vamsi Kurama, Pearson Learning Python, Mark Lutz, O'Really

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SOFTWARE ENGINEERING (Open Elective –II)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives

- The aim of the course is to provide an understanding of the working knowledge
 of the techniques for estimation, design, testing and quality management of
 large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

- Ability to translate end-user requirements into system and software requirements, using e.g.
- UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths.

A Generic view of process: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI)

Process models: The waterfall model, Spiral model and Agile methodology

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model. Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging. Metrics for Process and Products: Software measurement, metrics for software quality.

UNIT - V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM

Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

- 1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.
- 2. Software Engineering- Sommerville, 7th edition, Pearson Education.

- 1. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.
- 2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
- 3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.
- 4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

CRYPTOGRAPHY AND NETWORK SECURITY LAB

B.Tech. IV Year I Sem.

L TP C 0 0 2 1

Course Objectives:

- Explain the objectives of information security
- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various cryptographic algorithms.

Course Outcomes:

- Understand basic cryptographic algorithms, message and web authentication and security issues.
- Identify information system requirements for both of them such as client and server.
- Understand the current legal issues towards information security.

List of Experiments:

- 1. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should XOR each character in this string with 0 and display the result.
- 2. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should AND or and XOR each character in this string with 127 and display the result.
- 3. Write a Java program to perform encryption and decryption using the following algorithms a. Ceaser cipher b. Substitution cipher c. Hill Cipher
- 4. Write a C/JAVA program to implement the DES algorithm logic.
- 5. Write a C/JAVA program to implement the Blowfish algorithm logic.
- 6. Write a C/JAVA program to implement the Rijndael algorithm logic.
- 7. Write the RC4 logic in Java Using Java cryptography; encrypt the text "Hello world" using Blowfish. Create your own key using Java key tool.
- 8. Write a Java program to implement the RSA algorithm.
- 9. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript.
- 10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.
- 11. Calculate the message digest of a text using the MD5 algorithm in JAVA

TEXT BOOKS:

- 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition
- 2. Cryptography and Network Security: Atul Kahate, McGraw Hill, 3rd Edition

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

REFERENCE BOOKS:

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, McGraw Hill, 3rd Edition
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning

Network Security and Cryptography: Bernard Menezes, CENGAGE Learning

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DEV OPS LAB

B.Tech. IV Year I Sem.

L T P C 0 0 2 1

Course Objectives:

Develop a sustainable infrastructure for applications and ensure high scalability.
 DevOps aims to shorten the software development lifecycle to provide continuous delivery with high-quality.

Course Outcomes:

- 1. Understand the need of DevOps tools
- 2. Understand the environment for a software application development
- 3. Apply different project management, integration and development tools
- 4. Use Selenium tool for automated testing of application

List of Experiments:

- 1. Write code for a simple user registration form for an event.
- 2. Explore Git and GitHub commands.
- 3. Practice Source code management on GitHub. Experiment with the source code in exercise 1.
- 4. Jenkins installation and setup, explore the environment.
- 5. Demonstrate continuous integration and development using Jenkins.
- 6. Explore Docker commands for content management.
- 7. Develop a simple containerized application using Docker.
- 8. Integrate Kubernetes and Docker
- 9. Automate the process of running containerized application for exercise 7 using Kubernetes.
- 10. Install and Explore Selenium for automated testing.
- 11. Write a simple program in JavaScript and perform testing using Selenium.
- 12. Develop test cases for the above containerized application using selenium.

TEXT BOOKS:

1. Joakim Verona., Practical DevOps, Packt Publishing, 2016.

- 1. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications.
- 2. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ORGANIZATIONAL BEHAVIOUR

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives:

• This course demonstrates individual, group behavior aspects: The dynamics of organizational climate, structure and its impact on Organizations.

Course Outcomes:

 Students understand their personality, perception and attitudes for overall development and further learn the importance of group behavior in the organizations.

UNIT - I Organizational Behaviour

Definition, need and importance of organizational behaviour – Nature and scope – Frame work – Organizational behaviour models.

UNIT - II Individual Behaviour

Personality – types – Factors influencing personality – Theories – Learning – Types of learners – The learning process – Learning theories – Organizational behaviour modification, Misbehaviour – Types – Management Intervention. Emotions - Emotional Labour – Emotional Intelligence – Theories. Attitudes – Characteristics – Components – Formation – Measurement- Values. Perceptions – Importance – Factors influencing perception – Interpersonal perception- Impression Management. Motivation – importance – Types – Effects on work behavior.

UNIT - III Group Behaviour

Organization structure – Formation – Groups in organizations – Influence – Group dynamics – Emergence of informal leaders and working norms – Group decision making techniques – Team building - Interpersonal relations – Communication – Control.

UNIT - IV Leadership and Power

Meaning – Importance – Leadership styles – Theories of leadership – Leaders Vs Managers – Sources of power – Power centers – Power and Politics.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V Dynamics of Organizational Behaviour

Organizational culture and climate – Factors affecting organizational climate – Importance. Job satisfaction – Determinants – Measurements – Influence on behavior. Organizational change – Importance – Stability Vs Change – Proactive Vs Reaction change – the change process – Resistance to change – Managing change. Stress – Work Stressors – Prevention and Management of stress – Balancing work and Life. Organizational development – Characteristics – objectives –. Organizational effectiveness

TEXT BOOKS:

- 1. Stephen P. Robins, Organisational Behavior, PHI Learning / Pearson Education, 11th edition, 2008.
- 2. Fred Luthans, Organisational Behavior, McGraw Hill, 11th Edition, 2001.

REFERENCE BOOKS:

Schermerhorn, Hunt and Osborn, Organisational behavior, John Wiley, 9th Edition, 2008. Udai Pareek, Understanding Organisational Behaviour, 2nd Edition, Oxford Higher Education, 2004.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

REINFORCEMENT LEARNING (Professional Elective – VI)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Pre-requisites:

Machine Learning Fundamentals, Artificial Intelligence, Probability and Statistics

Course Objectives:

Knowledge on fundamentals of reinforcement learning and the methods used to create agents that can solve a variety of complex tasks.

Course Outcomes:

- Understand basics of RL.
- Understand RL Framework and Markov Decision Process.
- Analyzing ning through the use of Dynamic Programming and Monte Carlo.
- Understand TD(0) algorithm, TD(λ) algorithm.
- Implement and evaluate model-free control algorithms, such as Q-learning, SARSA, and Expected SARSA.
- Explore policy gradient methods and function approximation techniques for handling large-scale RL problems.

UNIT - I

Basics of probability and linear algebra, Definition of a stochastic multi-armed bandit, Definition of regret, Achieving sublinear regret, UCB algorithm, KL-UCB, Thompson Sampling.

UNIT - II

Markov Decision Problem, policy, and value function, Reward models (infinite discounted, total, finite horizon, and average), Episodic & continuing tasks, Bellman's optimality operator, and Value iteration & policy iteration

UNIT - III

The Reinforcement Learning problem, prediction and control problems, Model-based algorithm, Monte Carlo methods for prediction, and Online implementation of Monte Carlo policy evaluation

UNIT - IV

Bootstrapping; TD(0) algorithm; Convergence of Monte Carlo and batch TD(0) algorithms; Model-free control: Q learning, Sarsa, Expected Sarsa.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

n-step returns; $TD(\lambda)$ algorithm; Need for generalization in practice; Linear function approximation and geometric view; Linear $TD(\lambda)$. Tile coding; Control with function approximation; Policy search; Policy gradient methods; Experience replay; Fitted Q Iteration; Case studies.

TEXT BOOKS:

- 1. "Reinforcement learning: An introduction," First Edition, Sutton, Richard S., and Andrew G. Barto, MIT press 2020.
- 2. "Statistical reinforcement learning: modern machine learning approaches," First Edition, Sugiyama, Masashi. CRC Press 2015.

- 1. "Bandit algorithms," First Edition, Lattimore, T. and C. Szepesvári. Cambridge University Press. 2020.
- 2. "Reinforcement Learning Algorithms: Analysis and Applications," Boris Belousov, Hany Abdulsamad, Pascal Klink, Simone Parisi, and Jan Peters First Edition, Springer 2021. 3. Alexander Zai and Brandon Brown "Deep Reinforcement Learning in Action," First Edition, Manning Publications 2020

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DISTRIBUTED SYSTEMS (Professional Elective -VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Prerequisites:

- 1. A course on "Operating Systems".
- 2. A course on "Computer Organization & Architecture".

Course Objectives:

- To provide an insight into Distributed systems.
- To introduce concepts related to Peer to Peer Systems, Transactions and Concurrency control, Security and Distributed shared memory.

Course Outcomes:

- Understand Transactions and Concurrency control.
- Understand distributed shared memory.
- Design a protocol for a given distributed application.

UNIT - I

Characterization of Distributed Systems: Examples of Distributed systems, Resource sharing and web, challenges

System models: Architectural and Fundamental models, Networking and Internetworking, Interprocess Communication

Distributed objects and Remote Invocation: Communication between distributed objects, RPC, Events and notifications, Case study-Java RMI.

UNIT-II

Operating System Support- OS layer, Protection, Processes and Threads, Communication and Invocation, Operating system architecture.

Distributed File Systems-Introduction, File Service architecture.

UNIT - III

Peer to Peer Systems - Napster and its legacy, Peer to Peer middleware

Time and Global States-Introduction, Clocks, events and Process states, Synchronizing physical clocks, logical time and logical clocks, global states, distributed debugging.

Coordination and Agreement- Distributed mutual exclusion, Elections, Multicast communication, consensus and related problems.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

Transactions and Concurrency Control- Introduction, Transactions, Nested Transactions, Locks, Optimistic concurrency control, Timestamp ordering.

Distributed Transactions-Introduction, Flat and Nested Distributed Transactions, Atomic commit protocols, Concurrency control in distributed transactions

Distributed deadlocks: Transaction recovery.

UNIT - V

Replication: Introduction, System model and group communication, Fault tolerant services, Transactions with replicated data.

Distributed shared memory: Design and Implementation issues, Consistency models.

TEXT BOOKS:

- 1. Distributed Systems Concepts and Design, G Coulouris, J Dollimore and T Kindberg, Fourth Edition, Pearson Education.
- 2. Distributed Systems, S. Ghosh, Chapman & Hall/CRC, Taylor & Francis Group, 2010.

- 1. Distributed Systems Principles and Paradigms, A.S. Tanenbaum and M.V. Steen, Pearson Education.
- 2. Distributed Computing, Principles, Algorithms and Systems, Ajay D. Kshemakalyani and Mukesh Singhal, Cambridge, rp 2010.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

BIGDATA ANALYTICS (Professional elective – VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives

• Provide the knowledge of principles and techniques for Big data Analytics and give an exposure of the frontiers of Big data Analytics

Courses Outcomes

Understand the importance of big data analytics and its types
 Perform analytics on big data
 Proficiency in big data storage and processing in Hadoop
 Data analytics through SQL

UNIT - I

Types of Digital data: Classification of Digital Data, Introduction to Big Data: Evolution of Big Data, definition of big data, Traditional Business Intelligence vs BigData, Coexistence of Big Data and Data Warehouse. Big Data Analytics: introduction to Big Data Analytics, What Big Data Analytics Isn't, Sudden Hype Around Big Data Analytics, Classification of Analytics, Greatest Challenges that Prevent Business from Capitalizing Big Data, Top Challenges Facing Big Data, Big Data Analytics Importance, Data Science, Terminologies used in Big Data Environments.

UNIT - II

Introduction to Hadoop: Features of Hadoop, Key advantages of hadoop, versions of hadoop, overview of hadoop ecosystem, Hadoop distributions. Need of hadoop, History of hadoop, Hadoop overview, RDBMS vs Hadoop, Distribution computing challenges.

UNIT - III

Apache Hadoop & Hadoop Eco System, Processing data with Hadoop, introduction to MapReduce programming, mapper, reducer, combines, partitioner, Map Reduce Framework, Understanding inputs and outputs of MapReduce-Data Serialization, NoSQL

UNIT - IV

Hadoop Architecture: HDFS, HDFS Daemons, HDFS Architecture, Hadoop Configuration, Role of HBase in Big Data Processing, HIVE, PIG. Types of NoSQL Databases, advantages of NoSQL, Use of NoSQL in industry, SQL vs NoSQL, newSQL, comparison of Nosql, sql and newsql.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

MongoDB, necessity of mongodb, terms used in mongodb and RDBMS, datatypes in mongoDB, mongodb query language

TEXT BOOKS:

- 1. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015.
- 2. R programming for beginners, sandhya arora, latesh malik, university press.

- 1. chandramouli subramanian, Asha A Geroge, C R Rene Robin, big data analytics, University press.
- 2. Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiley CIO Series, 2013.
- 3. Hadoop: The Defmitive Guide, Tom White, 3rd Edition, O'Reilly Media, 2012.
- 4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

HUMAN COMPUTER INTERACTION (Professional Elective -VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- To gain an overview of Human-Computer Interaction (HCI)
- Understanding the alternatives to traditional "keyboard and mouse" computing.
- Getting familiarity with the vocabulary associated with sensory and cognitive systems
- Be able to apply models from cognitive psychology to predicting user performance
- Working in small groups on a product design with invaluable team-work experience.

Course Outcomes:

- Apply HCI and principles to interaction design.
- Design certain tools for blind or PH people
- Understand the social implications of technology and ethical responsibilities as engineers.
- Understand the importance of a design and evaluation methodology

UNIT - I

Introduction: Importance of user Interface – definition, importance of good design. Benefits of good design, A brief history of Screen design.

The graphical user interface – popularity of graphics, the concept of direct manipulation, graphical system, Characteristics, Web user – Interface popularity, characteristics- Principles of user interface.

UNIT-II

Design process – Human interaction with computers, importance of human characteristics, human consideration, Human interaction speeds, understanding business junctions.

Screen Designing: Design goals – Screen planning and purpose, organizing screen elements, ordering of screen data and content – screen navigation and flow – Visually pleasing composition – amount of information – focus and emphasis – presentation information simply and meaningfully – information retrieval on web – statistical graphics – Technological consideration in interface design.

UNIT-III

Windows – New and Navigation schemes selection of window, selection of devices based and screen-based controls. Components – text and messages, Icons and increases – Multimedia, colors, uses problems, choosing colors.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

HCI in the software process- The software life cycle, Usability engineering, Iterative design and prototyping, Design Focus: Prototyping in practice, Design rationale, Design rules, Principles to support usability Standards, Golden rules and heuristics, HCI patterns, Evaluation techniques, Goals of evaluation, Evaluation through expert analysis, Evaluation through user participation, Choosing an evaluation method, Universal design, Universal design principles Multimodal interaction

UNIT-V

Cognitive models Goal and task hierarchies Design Focus: GOMS saves money, Linguistic models, The challenge of display-based systems, Physical and device models, Cognitive architectures, Ubiquitous computing and augmented realities, Ubiquitous computing applications research, Design Focus: Ambient Wood – augmenting the physical, Virtual and augmented reality, Design Focus: Shared experience Design Focus: Applications of augmented reality Information and data visualization

TEXT BOOKS:

- 1. The essential guide to user interface design, Wilbert O Galitz, Wiley Dream Tech.
- 2. Human Computer Interaction. Alan Dix, Janet Fincay, Gregory's, Abowd, Russell Bealg, Pearson Education.

- 1. Designing the user interface. 3rd Edition Ben Shneidermann, Pearson Education Asia.
- 2. Interaction Design Prece, Rogers, Sharps. Wiley Dreamtech.
- 3. User Interface Design, Soren Lauesen, Pearson Education.
- 4. Human Computer Interaction, D. R. Olsen, Cengage Learning.
- 5. Human Computer Interaction, Smith Atakan, Cengage Learning.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

CYBER FORENSICS (Professional Elective -VI)

B.Tech. IV Year II Sem.

L TP C

3003

Prerequisites: Network Security.

Course Objectives:

- A brief explanation of the objective is to provide digital evidence which is obtained from digital media.
- In order to understand the objectives of computer forensics, first of all, people have to recognize the different roles computers play in a certain crime.
- According to a snippet from the United States Security Service, the computer functions in different kinds of crimes.

Course Outcomes:

- Students will understand the usage of computers in forensic, and how to use various forensic tools for a wide variety of investigations.
- It gives an opportunity to students to continue their zeal in research in computer forensics

UNIT-I

Introduction of Cybercrime: Types, The Internet spawns crime, Worms versus viruses, Computers' roles in crimes, Introduction to digital forensics, Introduction to Incident - Incident Response Methodology – Steps - Activities in Initial Response, Phase after detection of an incident

UNIT-II

Initial Response and forensic duplication, Initial Response & Volatile Data Collection from Windows system -Initial Response & Volatile Data Collection from Unix system - Forensic Duplication: Forensic duplication: Forensic Duplicates as Admissible Evidence, Forensic Duplication Tool Requirements, Creating a Forensic. Duplicate/Qualified Forensic Duplicate of a Hard Drive

UNIT-III

Forensics analysis and validation: Determining what data to collect and analyze, validating forensic data, addressing data-hiding techniques, performing remote acquisitions

Network Forensics: Network forensics overview, performing live acquisitions, developing standard procedures for network forensics, using network tools, examining the honeynet project.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-IV

Current Forensic tools: evaluating computer forensic tool needs, computer forensics software tools, computer forensics hardware tools, validating and testing forensics software E-Mail Investigations: Exploring the role of e-mail in investigation, exploring the roles of the client and server in e-mail, investigating e-mail crimes and violations, understanding e-mail servers, using specialized e-mail forensic tools.

Cell phone and mobile device forensics: Understanding mobile device forensics, understanding acquisition procedures for cell phones and mobile devices.

UNIT-V

Working with Windows and DOS Systems: understanding file systems, exploring Microsoft File Structures, Examining NTFS disks, Understanding whole disk encryption, windows registry, Microsoft startup tasks, MS-DOS startup tasks, virtual machines.

TEXT BOOKS:

- 1. Kevin Mandia, Chris Prosise, "Incident Response and computer forensics", Tata McGraw Hill, 2006.
- 2. Computer Forensics, Computer Crime Investigation by John R. Vacca, Firewall Media, New Delhi.
- 3. Computer Forensics and Investigations by Nelson, Phillips Enfinger, Steuart, CENGAGE Learning

- 1. Real Digital Forensics by Keith J. Jones, Richard Bejtiich, Curtis W. Rose, Addison-Wesley Pearson Education
- 2. Forensic Compiling, A Tractitioneris Guide by Tony Sammes and Brian Jenkinson, Springer International edition.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ALGORITHMS DESIGN AND ANALYSIS (Open Elective -III)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Prerequisites: Programming for problem solving and Data Structures

Course Objectives:

- Introduces the notations for analysis of the performance of algorithms.
- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate;
- Describes how to evaluate and compare different algorithms using worst, average, and best case analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:

- Analyze the performance of algorithms
- Choose appropriate data structures and algorithm design methods for a specified application
- Understand the choice of data structures and the algorithm design methods

UNIT - I

Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT - II

Disjoint Sets: Disjoint set operations, union and find algorithms, Priority Queue-Heaps, Heapsort **Backtracking**: General method, applications, n-queen's problem, sum of subsets problem, graph Coloring, Hamiltonian cycles.

UNIT - III

Dynamic Programming: General method, applications- Optimal binary search tree, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT - IV

Greedy method: General method, applications- Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

Basic Traversal and Search Techniques: Techniques for Binary Trees, Techniques for Graphs, Connected components, Biconnected components.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Branch and Bound: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP - Hard and NP-Complete classes, Cook's theorem.

TEXT BOOK:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University Press.

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- 2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R.Tamassia, John Wiley and sons

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DEEP LEARNING (Open Elective –III)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Prerequisites:

- 1. linear equations, graphs of functions, histograms, and statistical means
- **2.** Programming in Python

Course Objectives: students will be able

- 1. To understand complexity of Deep Learning algorithms and their limitations
- 2. To be capable of performing experiments in Deep Learning using real-world data.

Course Outcomes:

- 1. Implement deep learning algorithms, understand neural networks and traverse the layers of data
- 2. Learn topics such as convolutional neural networks, recurrent neural networks, training deep networks and high-level interfaces
- 3. Understand applications of Deep Learning to Computer Vision
- 4. Understand and analyze Applications of Deep Learning to NLP

UNIT - I

Introduction: Feed forward Neural networks, Gradient descent and the back propagation algorithm, Unit saturation, the vanishing gradient problem, and ways to mitigate it. RelU Heuristics for avoiding bad local minima, Heuristics for faster training, Nestors accelerated gradient descent, Regularization, Dropout

UNIT - II

Convolutional Neural Networks: Architectures, convolution/pooling layers, Recurrent Neural Networks: LSTM, GRU, Encoder Decoder architectures. Deep Unsupervised Learning: Auto encoders, Variational Auto-encoders, Adversarial Generative Networks, Auto-encoder and DBM Attention and memory models, Dynamic Memory Models

UNIT - III

Applications of Deep Learning to Computer Vision: Image segmentation, object detection, automatic image captioning, Image generation with Generative adversarial networks, video to text with LSTM models, Attention Models for computer vision tasks

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Applications of Deep Learning to NLP: Introduction to NLP and Vector Space Model of Semantics, Word Vector Representations: Continuous Skip-Gram Model, Continuous Bag-of-Wordsmodel (CBOW), Glove, Evaluations and Applications in word similarity

UNIT - V

Analogy reasoning: Named Entity Recognition, Opinion Mining using Recurrent Neural Networks: Parsing and Sentiment Analysis using Recursive Neural Networks: Sentence Classification using Convolutional Neural Networks, Dialogue Generation with LSTMs

TEXT BOOKS:

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.
- 3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCES:

- 1. Bishop, C, M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.