

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

B.TECH CSE (AI&ML) COURSE STRUCTURE & SYLLABUS (R22 Regulation) Applicable from A.Y. 2022-23 Batch

I YEAR I SEMESTER

ITEAR	I SEMESTER	· ·				
S.No	Course Code	Course Title	L	T	Р	Credits
1.	A1008	Matrices and Calculus	3	1	0	4
2.	A1001	Applied Physics	3	1	0	4
3.	A1505	Programming for Problem Solving	3	0	0	3
4.	A1303	Engineering Workshop	0	1	3	2.5
5.	A1005	English for Skill Enhancement	2	0	0	2
6.	A1504	Elements of Computer Science & Engineering	0	0	2	1
7.	A1002	Applied Physics Laboratory	0	0	3	1.5
8.	A1506	Programming for Problem Solving Laboratory	0	0	2	1
9.	A1006	English Language and Communication Skills Laboratory	0	0	2	1
10.	A1007	Environmental Science	3	0	0	0
11.		Induction Programme				
		Total	14	3	12	20

I YEAR II SEMESTER

S.No	Course Code	Course Title	L	Т	Р	Credits
1.	A1010	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	A1003	Engineering Chemistry	3	1	0	4
3.	A1301	Computer Aided Engineering Graphics	1	0	4	3
4.	A1401	Basic Electrical Engineering	2	0	0	2
5.	A1508	Data Structures	3	0	0	3
6.	A1004	Engineering Chemistry Laboratory	0	0	2	1
7.	A1402	Basic Electrical Engineering Laboratory	0	0	2	1
8.	A1509	Data Structures Laboratory	0	0	2	1
9.	A1512	IT Workshop	0	0	2	1
		Total	12	2	12	20

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

II YEAR I SEMESTER

S.No	Course Code	Course Title	L	Т	Р	Credits
1.	A1519	Discrete Mathematics	3	0	0	3
2.	A1520	Object Oriented Programming through Java	3	0	0	3
3.	A1515	Computer Organization and Architecture	3	0	0	3
4.	A1601	Software Engineering	3	0	0	3
5.	A1603	Operating Systems	3	0	0	3
6.	A1604	Operating Systems Lab	0	0	3	1.5
7.	A1608	Java Lab	0	0	3	1.5
8.	A1602	Software Engineering Lab	0	0	2	1
9.	A1605	Skill Development Course (Node JS/ React JS/ Django)	0	0	2	1
10.	A1017	Constitution of India	3	0	0	0
11.	A1009	Human Values & Ethics	2	0	0	0
		Total	20	0	10	20

II YEAR II SEMESTER

S.No	Course Code	Course Title	L	Т	Р	Credits
1.	A1012	Mathematical and Statistical Foundations	3	0	0	3
2.	A1606	Automata Theory and Compiler Design	3	0	0	3
3.	A1516	Database Management Systems	3	0	0	3
4.	A1607	Introduction to Artificial Intelligence	3	0	0	3
5.	A1513	Python Programming	3	0	0	3
6.	A1517	Database Management Systems Lab	0	0	2	1
7.	A1514	Python Programming Lab	0	0	2	1
8.	A1609	Real-time Research Project/Field-Based Research Project	0	0	4	2
9.	A1610	Skill Development Course (Prolog/ Lisp/ Pyswip)	0	0	2	1
10.	A1018	Gender Sensitization Lab	0	0	2	0
		Total	15	0	12	20

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA & ISO 9001:2015 Certified

DEPARTMENT OF CSE (AI&ML)

B.Tech. in CSE (AI &ML) COURSE STRUCTURE & SYLLABUS

(R22 Regulations-Autonomous)
Applicable from 2022-23 Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title		L	т	Р	Credits
1	A1523	Design and Analysis of Algorithms		3	0	0	3
2	A1611	Machine Learning	3	0	0	3	
3	A1524	Computer Networks		3	0	0	3
4	A1016	Business Economics & Financial Analysis		3	0	0	3
5		Professional Elective – I		3	0	0	3
6	A1612	Machine Learning Lab		0	0	2	1
7	A1525	Computer Networks Lab		0	0	2	1
8	A1019	Advanced English Communication Skills lab		0	0	2	1
9	A1020	Intellectual Property Rights		3	0	0	0
10	A1021	Logical Reasoning- I		0	0	2	1
11	A1528	Skill Development Course (UI design- Flutter)		0	0	2	1
			Total	18	0	10	20

III YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	A1613	Deep Learning	3	0	0	3
2	A1615	Data Analytics	3	0	0	3
3	A1617	Natural Language Processing	3	0	0	3
4		Professional Elective – II	3	0	0	3
5		Open Elective-I	3	0	0	3
6	A1618	Natural Language Processing Lab/Full Stack Development Lab	0	0	2	1
7	A1614	Deep Learning Lab	0	0	2	1
8	A1022	Logical Reasoning- II	0	0	2	1
9	A1616	Data Analytics Lab	0	0	2	1
10	A1007	Environmental Science	3	0	0	0
11	A1619	Industrial Oriented Mini Project/ Internship/Skill Development Course (DevOps)	0	0	2	1
		Total	18	0	10	20

1. Swell

2. G. Hing

3. (VA)

4.1

5. M. Tayer

6. Swathi

11.68/12

7. 92/1/2024

8.3. Jade 9. . W

13 Olsef

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA & ISO 9001:2015 Certified

DEPARTMENT OF CSE (AI&ML)

#Skill Course - 1 credit with 2 Practical Hours Professional Elective-I

A 4 C E 4	Graph Theory
A1651	Graph meory
A1652	Introduction to Data Science
	Web Programming
A1653	veel roganining
A1654	Image Processing
A1655	Soft Computing

Professional Elective - II

A1568	Software Testing Methodologies
A1558	Information Retrieval Systems
A1656	Pattern Recognition
A1560	Full Stack Development
A1751	Data Warehousing and Business Intelligence

Open Elective - I

A1691	Fundamentals of Al
A1692	Machine Learning Basics

1. 85

2. G. Aprinty

3. W

4. US S. M. Tayar

6. Swith

10.

T. 921/2029

11 Jaloth

8. S. Pade

12.

9. WM

13. Jesuf

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

MATRICES AND CALCULUS Common to CIVIL,MECH,ECE,CSE,CSE(AIML),CSE(DS)

B.Tech. I Year I Sem.

L T P C 3 1 0 4

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn

- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of eigenvalues and eigenvectors and to reduce the quadratic form to canonical form
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- · Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- · Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.
- Evaluation of multiple integrals and their applications

Course outcomes: After learning the contents of this paper the student must be able to

- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigenvalues and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- · Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/ without constraints.
- Evaluate the multiple integrals and apply the concept to find areas, volumes

UNIT-I: Matrices 10 L

Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Gauss Seidel Iteration Method.

UNIT-II: Elgen values and Eigen vectors

10 L

10 L

Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT-III: Calculus 10 L

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series.

Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT-IV: Multivariable Calculus (Partial Differentiation and applications)

Definitions of Limit and continuity.

Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence & independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

UNIT-V: Multivariable Calculus (Integration)

8 L

Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals.

Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals).

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Editon, 2016.

- 1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

APPLIED PHYSICS

B.Tech. I Year I Sem.

L T P C 3 1 0 4

Pre-requisites: 10 + 2 Physics

Course Objectives: The objectives of this course for the student are to:

- 1. Understand the basic principles of quantum physics and band theory of solids.
- Understand the underlying mechanism involved in construction and working principles of various semiconductor devices.
- 3. Study the fundamental concepts related to the dielectric, magnetic and energy materials.
- Identify the importance of nanoscale, quantum confinement and various fabrications techniques.
- 5. Study the characteristics of lasers and optical fibres.

Course Outcomes: At the end of the course the student will be able to:

- Understand physical world from fundamental point of view by the concepts of Quantum mechanics and visualize the difference between conductor, semiconductor, and an insulator by classification of solids.
- 2. Identify the role of semiconductor devices in science and engineering Applications.
- 3. Explore the fundamental properties of dielectric, magnetic materials and energy for their applications.
- 4. Appreciate the features and applications of Nanomaterials.
- 5. Understand various aspects of Lasers and Optical fiber and their applications in diverse fields.

UNIT - I: QUANTUM PHYSICS AND SOLIDS

Quantum Mechanics: Introduction to quantum physics, blackbody radiation – Stefan-Boltzmann's law, Wein's and Rayleigh-Jean's law, Planck's radiation law - photoelectric effect - wave particle duality and de – Broglie hypothesis, Davisson and Germer experiment –Heisenberg uncertainty principle – Physical significance of wave function – time independent Schrodinger wave equation - particle in one dimensional potential box.

Solids: Free electron theory (Drude & Lorentz, Sommerfeld) - Fermi-Dirac distribution - Bloch's theorem -Kronig-Penney model - E-K diagram- effective mass of electron-origin of energy bands-classification of solids.

UNIT - II: SEMICONDUCTORS AND DEVICES

Intrinsic and extrinsic semiconductors – Hall effect - direct and indirect band gap semiconductors construction, principle of operation and characteristics of P-N Junction diode, Zener diode and bipolar junction transistor (BJT)–LED, PIN diode, avalanche photo diode (APD) and solar cells, their structure, materials, working principle and characteristics.

UNIT - III: DIELECTRIC, MAGNETIC AND ENERGY MATERIALS

Dielectric Materials: Basic definitions- types of polarizations (qualitative) ferroelectric, piezoelectric, and pyroelectric materials – applications – liquid crystal displays (LCD) and crystal oscillators.

Magnetic Materials: Hysteresis - soft and hard magnetic materials - magnetostriction, magnetoresistance - applications - bubble memory devices, magnetic field sensors and multiferroics.

Energy Materials: Conductivity of liquid and solid electrolytes- superionic conductors - materials and electrolytes for super capacitors - rechargeable ion batteries, solid fuel cells.

UNIT - IV: NANOTECHNOLOGY

Nanoscale, quantum confinement, surface to volume ratio, bottom-up fabrication: sol-gel, precipitation, combustion methods – top-down fabrication: ball milling - physical vapor deposition (PVD) - chemical vapor deposition (CVD) - characterization techniques - XRD, SEM &TEM - applications of nanomaterials.

Dr. Md. SHAREEFUDDIN

Associate Professor
Department of Physics
University College of School
Osmania University, Hyden

Dr. M. Sreenath Reddy

Associate Professor in Physics University College of Science, OU.Hyd-007

2 mast

UNIT - V: LASER AND FIBER OPTICS

Lasers: Laser beam characteristics-three quantum processes-Einstein coefficients and their relationslasing action - pumping methods- ruby laser, He-Ne laser , CO₂ laser, Nd:YAG laser-semiconductor laser-applications of laser.

Fiber Optics: Introduction to optical fiber- advantages of optical Fibers - total internal reflection-construction of optical fiber - acceptance angle - numerical aperture- classification of optical fibers-losses in optical fiber - optical fiber for communication system - applications.

TEXT BOOKS:

- M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"-S. Chand Publications, 11th Edition 2019.
- 2. Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson Publication, 2019
- Semiconductor Physics and Devices- Basic Principle Donald A, Neamen, Mc Graw Hill, 4thEdition.2021.
- 4. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2ndEdition,2022.
- Essentials of Nanoscience & Nanotechnology by Narasimha Reddy Katta, Typical Creatives NANO DIGEST, 1st Edition, 2021.

REFERENCE BOOKS:

- 1. Quantum Physics, H.C. Verma, TBS Publication, 2nd Edition 2012.
- 2. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley &Sons, 11th Edition, 2018.
- 3. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019.
- 4. Elementary Solid State Physics, S.L. Gupta and V. Kumar, Pragathi Prakashan, 2019.
- 5. A.K. Bhandhopadhya Nano Materials, New Age International, 1st Edition, 2007.
- Energy Materials a Short Introduction to Functional Materials for Energy Conversion and Storage Aliaksandr S. Bandarenka, CRC Press Taylor & Francis Group
- 7. Energy Materials, Taylor & Francis Group, 1st Edition, 2022.

Dr. Md. SHAREEFUDDIN

Associate Professor
Department of Physics
University College of Scar
Osmania University, Hyder

Dr. M. Sreenath Reddy

Associate Professor in Physics University College of Science, OU, Hyd-007

E MAST

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

PROGRAMMING FOR PROBLEM SOLVING

B.Tech. I Year I Sem.

(Common to CSE,CSE(AIML),CSE(DS))

L T P C

Course Objectives:

- · To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of the C programming language.
- To learn the usage of structured programming approaches in solving problems.

Course Outcomes: The student will learn

- To write algorithms and to draw flowcharts for solving problems.
- To convert the algorithms/flowcharts to C programs.
- To code and test a given logic in the C programming language.
- To decompose a problem into functions and to develop modular reusable code.
- . To use arrays, pointers, strings and structures to write C programs.
- Searching and sorting problems.

UNIT - I: Introduction to Programming

Compilers, compiling and executing a program.

Representation of Algorithm - Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number Flowchart/Pseudocode with examples, Program design and structured programming

Introduction to C Programming Language: variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments Bitwise operations: Bitwise AND, OR, XOR and NOT operators

Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do-while loops

I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr. Command line arguments

UNIT - II: Arrays, Strings, Structures and Pointers:

Arrays: one and two dimensional arrays, creating, accessing and manipulating elements of arrays Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, streat, strepy, strstr etc.), arrays of strings

Structures: Defining structures, initializing structures, unions, Array of structures

Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-referential structures, usage of self referential structures in linked list (no implementation) Enumeration data type

UNIT - III: Preprocessor and File handling in C:

Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

UNIT - IV: Function and Dynamic Memory Allocation:

Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries

Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types

UNIT - V: Searching and Sorting:

Basic searching in an array of elements (linear and binary search techniques), Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms), Basic concept of order of complexity through the example programs

TEXT BOOKS:

- 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition,
- B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition)

- Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
- 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
- 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
- 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
- 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENGINEERING WORKSHOP

L T P C 0 1 3 2.5

B.Tech. I Year I Sem.

Pre-requisites: Practical skill

Course Objectives:

- To Study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:

- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

1. TRADES FOR EXERCISES:

At least two exercises from each trade:

- I. Carpentry (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
- II. Fitting (V-Fit, Dovetail Fit & Semi-circular fit)
- III. Tin-Smithy (Square Tin, Rectangular Tray & Conical Funnel)
- IV. Foundry (Preparation of Green Sand Mould using Single Piece and Split Pattern)
- V. Welding Practice (Arc Welding & Gas Welding)
- VI. House-wiring (Parallel & Series, Two-way Switch and Tube Light)
- VII. Black Smithy (Round to Square, Fan Hook and S-Hook)

2. TRADES FOR DEMONSTRATION & EXPOSURE:

Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

TEXT BOOKS:

- 1. Workshop Practice /B. L. Juneja / Cengage
- 2. Workshop Manual / K. Venugopal / Anuradha.

- 1. Work shop Manual P. Kannaiah/ K.L. Narayana/ Scitech
- 2. Workshop Manual / Venkat Reddy/ BSP

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENGLISH FOR SKILL ENHANCEMENT

B.Tech. I Year I Sem.

L T P C 2 0 0 2

Course Objectives: This course will enable the students to:

- 1. Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- 2. Develop study skills and communication skills in various professional situations.
- 3. Equip students to study engineering subjects more effectively and critically using the theoretical and practical components of the syllabus.

Course Outcomes: Students will be able to:

- 1. Understand the importance of vocabulary and sentence structures.
- 2. Choose appropriate vocabulary and sentence structures for their oral and written communication.
- 3. Demonstrate their understanding of the rules of functional grammar.
- 4. Develop comprehension skills from the known and unknown passages.
- 5. Take an active part in drafting paragraphs, letters, essays, abstracts, précis and reports in various contexts.
- 6. Acquire basic proficiency in reading and writing modules of English.

UNIT - I

Chapter entitled 'Toasted English' by R.K.Narayan from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: The Concept of Word Formation -The Use of Prefixes and Suffixes - Acquaintance with

Prefixes and Suffixes from Foreign Languages to form Derivatives - Synonyms and

Antonyms

Grammar: Identifying

Identifying Common Errors in Writing with Reference to Articles and Prepositions.

Reading:

Reading and Its Importance-Techniques for Effective Reading.

Writing:

Sentence Structures -Use of Phrases and Clauses in Sentences-Importance of Proper Punctuation- Techniques for Writing precisely - Paragraph Writing - Types, Structures and Features of a Paragraph - Creating Coherence-Organizing Principles of

Paragraphs in Documents.

UNIT - II

Chapter entitled 'Appro JRD' by Sudha Murthy from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary:

Words Often Misspelt - Homophones, Homonyms and Homographs

Grammar:

Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and

Subject-verb Agreement.

Reading:

Sub-Skills of Reading – Skimming and Scanning – Exercises for Practice

Writing:

Nature and Style of Writing- Defining / Describing People, Objects, Places and Events

- Classifying- Providing Examples or Evidence.

UNIT - III

Chapter entitled 'Lessons from Online Learning' by F.Haider Alvi, Deborah Hurst et al from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

vocabulary

Words Often Confused - Words from Foreign Languages and their Use in English. Identifying Common Errors in Writing with Reference to Misplaced Modifiers and

Grammar:

enses.

Reading:

Sub-Skills of Reading - Intensive Reading and Extensive Reading - Exercises for

Practice.

Writina:

Format of a Formal Letter-Writing Formal Letters E.g., Letter of Complaint, Letter of

Requisition, Email Etiquette, Job Application with CV/Resume.

UNIT - IV

Chapter entitled 'Art and Literature' by Abdul Kalam from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary:

Standard Abbreviations in English

Grammar:

Redundancies and Clichés in Oral and Written Communication.

Reading:

Survey, Question, Read, Recite and Review (SQ3R Method) - Exercises for Practice

Writing:

Writing Practices- Essay Writing-Writing Introduction and Conclusion - Précis Writing.

UNIT - V

Chapter entitled 'Go, Kiss the World' by Subroto Bagchi from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary:

Technical Vocabulary and their Usage

Grammar:

Common Errors in English (Covering all the other aspects of grammar which were not

covered in the previous units)

Reading:

Reading Comprehension-Exercises for Practice

Writing:

Technical Reports- Introduction - Characteristics of a Report - Categories of Reports

Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing a

Report.

Note: Listening and Speaking Skills which are given under Unit-6 in AICTE Model Curriculum are covered in the syllabus of ELCS Lab Course.

- Note: 1. As the syllabus of English given in AICTE Model Curriculum-2018 for B.Tech First Year is Open-ended, besides following the prescribed textbook, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning in the class.
- Note: 2.Based on the recommendations of NEP2020, teachers are requested to be flexible to adopt Blended Learning in dealing with the course contents. They are advised to teach 40 percent of each topic from the syllabus in blended mode.

TEXT BOOK:

"English: Language, Context and Culture" by Orient BlackSwan Pvt. Ltd, Hyderabad. 2022.
 Print.

- 1. Effective Academic Writing by Liss and Davis (OUP)
- 2. Richards, Jack C. (2022) Interchange Series. Introduction, 1,2,3. Cambridge University Press
- 3. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
- Chaudhuri, Santanu Sinha. (2018). Learn English: A Fun Book of Functional Language, Grammar and Vocabulary. (2nd ed.,). Sage Publications India Pvt. Ltd.
- 5. (2019). Technical Communication. Wiley India Pvt. Ltd.
- Vishwamohan, Aysha. (2013). English for Technical Communication for Engineering Students. Mc Graw-Hill Education India Pvt. Ltd.
- 7. Swan, Michael. (2016). Practical English Usage. Oxford University Press. Fourth Edition.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ELEMENTS OF COMPUTER SCIENCE AND ENGINEERING

(Common to CSE,CSE(AIML),CSE(DS))

B.Tech. I Year I Sem.

L T P C 0 0 2 1

Course Objective: To provide an overview of the subjects of computer science and engineering.

Course Outcomes:

- 1. Know the working principles of functional units of a basic Computer
- Understand program development, the use of data structures and algorithms in problem solving.
- 3. Know the need and types of operating system, database systems.
- 4. Understand the significance of networks, internet, WWW and cyber security.
- 5. Understand Autonomous systems, the application of artificial intelligence.

UNIT - I

Basics of a Computer – Hardware, Software, Generations of computers. Hardware - functional units, Components of CPU, Memory – hierarchy, types of memory, Input and output devices. Software – systems software, application software, packages, frameworks, IDEs.

UNIT - II

Software development – waterfall model, Agile, Types of computer languages – Programming, markup, scripting Program Development – steps in program development, flowcharts, algorithms, data structures – definition, types of data structures

UNIT - III

Operating systems: Functions of operating systems, types of operating systems, Device & Resource management

Database Management Systems: Data models, RDBMS, SQL, Database Transactions, data centers, cloud services

UNIT - IV

Computer Networks: Advantages of computer networks, LAN, WAN, MAN, internet, WiFi, sensor networks, vehicular networks, 5G communication.

World Wide Web – Basics, role of HTML, CSS, XML, Tools for web designing, Social media, Online social networks.

Security - information security, cyber security, cyber laws

UNIT -- V

Autonomous Systems: IoT, Robotics, Drones, Artificial Intelligence – Learning, Game Development, natural language processing, image and video processing.

Cloud Basics

TEXT BOOK:

 Invitation to Computer Science, G. Michael Schneider, Macalester College, Judith L. Gersting University of Hawaii, Hilo, Contributing author: Keith Miller University of Illinois, Springfield.

- 1. Fundamentals of Computers, Reema Thareja, Oxford Higher Education, Oxford University Press.
- 2. Introduction to computers, Peter Norton, 8th Edition, Tata McGraw Hill.
- Computer Fundamentals, Anita Goel, Pearson Education India, 2010.
- 4. Elements of computer science, Cengage.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

APPLIED PHYSICS LABORATORY

B.Tech. I Year I Sem.

Course Objectives: The objectives of this course for the student to

L T P C 0 0 3 1.5

- 1. Capable of handling instruments related to the Hall effect and photoelectric effect experiments and their measurements.
- Understand the characteristics of various devices such as PN junction diode, Zener diode, BJT, LED, solar cell, lasers and optical fiber and measurement of energy gap and resistivity of semiconductor materials.
- 3. Able to measure the characteristics of dielectric constant of a given material.
- 4. Study the behavior of B-H curve of ferromagnetic materials.
- 5. Understanding the method of least squares fitting.

Course Outcomes: The students will be able to:

- 1. Know the determination of the Planck's constant using Photo electric effect and identify the material whether it is n-type or p-type by Hall experiment.
- 2. Appreciate quantum physics in semiconductor devices and optoelectronics.
- 3. Gain the knowledge of applications of dielectric constant.
- 4. Understand the variation of magnetic field and behavior of hysteresis curve.
- 5. Carried out data analysis.

LIST OF EXPERIMENTS:

- 1. Determination of work function and Planck's constant using photoelectric effect.
- 2. Determination of Hall co-efficient and carrier concentration of a given semiconductor.
- 3. Characteristics of series and parallel LCR circuits.
- 4. V-I characteristics of a p-n junction diode and Zener diode
- 5. Input and output characteristics of BJT (CE, CB & CC configurations)
- 6. a) V-I and L-I characteristics of light emitting diode (LED)
 - b) V-I Characteristics of solar cell
- 7. Determination of Energy gap of a semiconductor.
- 8. Determination of the resistivity of semiconductor by two probe method.
- 9. Study B-H curve of a magnetic material.
- 10. Determination of dielectric constant of a given material
- 11. a) Determination of the beam divergence of the given LASER beam
 - b) Determination of Acceptance Angle and Numerical Apertureof an optical fiber.
- 12. Understanding the method of least squares torsional pendulum as an example.

Note: Any 8 experiments are to be performed.

REFERENCE BOOK:

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

PROGRAMMING FOR PROBLEM SOLVING LABORATORY (Common to CSE,CSE(AIML),CSE(DS))

B.Tech. I Year I Sem.

L T P C 0 0 2 1

[Note: The programs may be executed using any available Open Source/ Freely available IDE

Some of the Tools available are: CodeLite: https://codelite.org/

Code:Blocks: http://www.codeblocks.org/ DevCpp: http://www.bloodshed.net/devcpp.html

Eclipse: http://www.eclipse.org

This list is not exhaustive and is NOT in any order of preference!

Course Objectives: The students will learn the following:

- . To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To Write programs using the Dynamic Memory Allocation concept.
- · To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:

- · formulate the algorithms for simple problems
- translate given algorithms to a working and correct program
- correct syntax errors as reported by the compilers
- · identify and correct logical errors encountered during execution
- · represent and manipulate data with arrays, strings and structures
- use pointers of different types
- create, read and write to and from simple text and binary files
- modularize the code with functions so that they can be reused

Practice sessions:

- a. Write a simple program that prints the results of all the operators available in C (including pre/ post increment, bitwise and/or/not, etc.). Read required operand values from standard input.
- Write a simple program that converts one given data type to another using auto conversion and casting. Take the values from standard input.

Simple numeric problems:

- a. Write a program for finding the max and min from the three numbers.
- b. Write the program for the simple, compound interest.
- c. Write a program that declares Class awarded for a given percentage of marks, where mark <40%= Failed, 40% to <60% = Second class, 60% to <70%=First class, >= 70% = Distinction. Read percentage from standard input.
- d. Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be:
- e. $5 \times 1 = 5$
- f. $5 \times 2 = 10$
- g. $5 \times 3 = 15$
- h. Write a program that shows the binary equivalent of a given positive number between 0 to 255.

Expression Evaluation:

- a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula s = ut+(1/2)at^2 where u and a are the initial velocity in m/sec (= 0) and acceleration in m/sec^2 (= 9.8 m/s^2)).
- b. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)
- c. Write a program that finds if a given number is a prime number
- d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.
- e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
- f. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
- g. Write a C program to find the roots of a Quadratic equation.
- h. Write a C program to calculate the following, where x is a fractional value.
- i. 1-x/2 +x^2/4-x^3/6
- j. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: 1+x+x^2+x^3+.....+x^n. For example: if n is 3 and x is 5, then the program computes 1+5+25+125.

Arrays, Pointers and Functions:

- a. Write a C program to find the minimum, maximum and average in an array of integers.
- b. Write a function to compute mean, variance, Standard Deviation, sorting of n elements in a single dimension array.
- c. Write a C program that uses functions to perform the following:
- d. Addition of Two Matrices
- e. Multiplication of Two Matrices
- f. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be the same.
- g. Write C programs that use both recursive and non-recursive functions
- To find the factorial of a given integer.
- i. To find the GCD (greatest common divisor) of two given integers.
- To find x^n
- k. Write a program for reading elements using a pointer into an array and display the values using the array.
- I. Write a program for display values reverse order from an array using a pointer.
- m. Write a program through a pointer variable to sum of n elements from an array.

Files:

- a. Write a C program to display the contents of a file to standard output device.
- Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.
- c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.
- d. Write a C program that does the following:
 - It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function)
 - Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use fseek function)
 - The program should then read all 10 values and print them back.

e. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

Strings:

- a. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.
- b. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent
- c. Write a C program that uses functions to perform the following operations:
- d. To insert a sub-string into a given main string from a given position.
- e. To delete n Characters from a given position in a given string.
- f. Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)
- g. Write a C program that displays the position of a character ch in the string S or 1 if S doesn't contain ch.
- h. Write a C program to count the lines, words and characters in a given text.

Miscellaneous:

- a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions.
 Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.
- b. Write a C program to construct a pyramid of numbers as follows:

1	*	1	1	*
12	* *	23	22	* *
123	* * *	456	333	***
			4 4 4 4	* *

Sorting and Searching:

- a. Write a C program that uses non recursive function to search for a Key value in a given
- b. list of integers using linear search method.
- c. Write a C program that uses non recursive function to search for a Key value in a given
- d. sorted list of integers using binary search method.
- e. Write a C program that implements the Bubble sort method to sort a given list of
- f. integers in ascending order.
- g. Write a C program that sorts the given array of integers using selection sort in descending order
- h. Write a C program that sorts the given array of integers using insertion sort in ascending order
- Write a C program that sorts a given array of names

TEXT BOOKS:

- 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition, Pearson
- B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition)

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, PHI
- 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
- 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
- 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
- 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
- 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY

B.Tech. I Year I Sem.

L T P C 0 0 2 1

The English Language and Communication Skills (ELCS) Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:

- ✓ To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- ✓ To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
- ✓ To bring about a consistent accent and intelligibility in students' pronunciation of English by providing an opportunity for practice in speaking
- ✓ To improve the fluency of students in spoken English and neutralize the impact of dialects.
- ✓ To train students to use language appropriately for public speaking, group discussions and interviews

Course Outcomes: Students will be able to:

- ✓ Understand the nuances of English language through audio- visual experience and group activities
- ✓ Neutralise their accent for intelligibility
- ✓ Speak with clarity and confidence which in turn enhances their employability skills

Syllabus: English Language and Communication Skills Lab (ELCS) shall have two parts:

- a. Computer Assisted Language Learning (CALL) Lab
- b. Interactive Communication Skills (ICS) Lab

Listening Skills:

Objectives

- 1. To enable students develop their listening skills so that they may appreciate the role in the LSRW skills approach to language and improve their pronunciation
- 2. To equip students with necessary training in listening, so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.

- · Listening for general content
- Listening to fill up information
- · Intensive listening
- · Listening for specific information

Speaking Skills:

Objectives

- 1. To involve students in speaking activities in various contexts
- 2. To enable students express themselves fluently and appropriately in social and professional contexts
- Oral practice
- Describing objects/situations/people
- Role play Individual/Group activities
- Just A Minute (JAM) Sessions

The following course content is prescribed for the English Language and Communication Skills Lab.

Exercise - I

CALL Lab:

Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers- Effective Listening.

Practice: Introduction to Phonetics – Speech Sounds – Vowels and Consonants – Minimal PairsConsonant Clusters- Past Tense Marker and Plural Marker- Testing Exercises

ICS Lab:

Understand: Spoken vs. Written language- Formal and Informal English.

Practice: Ice-Breaking Activity and JAM Session- Situational Dialogues – Greetings – Taking Leave – Introducing Oneself and Others.

Exercise - II

CALL Lab:

Understand: Structure of Syllables – Word Stress– Weak Forms and Strong Forms – Stress pattern in sentences – Intonation.

Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms- Stress pattern in sentences - Intonation - Testing Exercises

ICS Lab:

Understand: Features of Good Conversation - Strategies for Effective Communication.

Practice: Situational Dialogues – Role Play- Expressions in Various Situations – Making Requests and Seeking Permissions - Telephone Etiquette.

Exercise - III

CALL Lab:

Understand: Errors in Pronunciation-Neutralising Mother Tongue Interference (MTI).

Practice: Common Indian Variants in Pronunciation – Differences between British and American Pronunciation -Testing Exercises

ICS Lab:

Understand: Descriptions- Narrations- Giving Directions and Guidelines - Blog Writing

Practice: Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

Exercise - IV

CALL Lab:

Understand: Listening for General Details.

Practice: Listening Comprehension Tests - Testing Exercises

ICS Lab:

Understand: Public Speaking - Exposure to Structured Talks - Non-verbal Communication-Presentation Skills.

Practice: Making a Short Speech - Extempore- Making a Presentation.

Exercise - V

CALL Lab:

Understand: Listening for Specific Details.

Practice: Listening Comprehension Tests -Testing Exercises:

ICS Lab:

Understand: Group Discussion Practice: Group Discussion

Minimum Requirement of infrastructural facilities for ELCS Lab:

1. Computer Assisted Language Learning (CALL) Lab:

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self- study by students.

System Requirement (Hardware component):

Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

- i) Computers with Suitable Configuration
- ii) High Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab:

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audiovisual aids with a Public Address System, a T. V. or LCD, a digital stereo –audio & video system and camcorder etc.

Source of Material (Master Copy):

Exercises in Spoken English. Part 1,2,3. CIEFL and Oxford University Press

Note: Teachers are requested to make use of the master copy and get it tailor-made to suit the contents of the syllabus.

Suggested Software:

- Cambridge Advanced Learners' English Dictionary with CD.
- · Grammar Made Easy by Darling Kindersley.
- Punctuation Made Easy by Darling Kindersley.
- Oxford Advanced Learner's Compass, 10th Edition.
- English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
- English Pronunciation in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- English Vocabulary in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS).
- Digital All
- Orell Digital Language Lab (Licensed Version)

- (2022). English Language Communication Skills Lab Manual cum Workbook. Cengage Learning India Pvt. Ltd.
- Shobha, KN & Rayen, J. Lourdes. (2019). Communicative English A workbook. Cambridge University Press
- Kumar, Sanjay & Lata, Pushp. (2019). Communication Skills: A Workbook. Oxford University Press
- Board of Editors. (2016). ELCS Lab Manual: A Workbook for CALL and ICS Lab Activities. Orient Black Swan Pvt. Ltd.
- Mishra, Veerendra et al. (2020). English Language Skills: A Practical Approach. Cambridge University Press.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENVIRONMENTAL SCIENCE

B.Tech. I Year I Sem.

L T P C 3 0 0 0

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

Course Outcomes:

 Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II

Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT - III

Biodiversity and Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management. Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Issues and Global Efforts: C**limate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-Gol Initiatives.

UNIT - V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socioeconomical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan

(EMP). **Towards Sustainable Future:** Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

- Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.
- 6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

COMMON TO CIVIL, MECH, ECE, CSE, CSE(DS) & CSE(AIML)

B.Tech. I Year II Sem.

LTPC

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn

- Methods of solving the differential equations of first and higher order.
- Concept, properties of Laplace transforms
- Solving ordinary differential equations using Laplace transforms techniques.
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course outcomes: After learning the contents of this paper the student must be able to

- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real world problems.
- Use the Laplace transforms techniques for solving ODE's.
- Evaluate the line, surface and volume integrals and converting them from one to another

UNIT-I: First Order ODE

Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli's equations, Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling, Law of natural growth and decay.

UNIT-II: Ordinary Differential Equations of Higher Order

10 L

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax} , $\sin ax$, $\cos ax$, polynomials in x, $e^{ax}V(x)$ and xV(x), method of variation of parameters, Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation. Applications: Electric Circuits

UNIT-III: Laplace transforms

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by "f", Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

UNIT-IV: Vector Differentiation

10 L

Vector point functions and scalar point functions, Gradient, Divergence and Curf, Directional derivatives, Tangent plane and normal line, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors.

UNIT-V: Vector Integration

10 L

Line, Surface and Volume Integrals, Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:

B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016.

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 3. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.
- 4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

An Autonomous Institution
Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENGINEERING CHEMISTRY

B.Tech. I Year II Sem.

L T P C

Course Objectives:

- 1. To bring adaptability to new developments in Engineering Chemistry and to acquire the skills required to become a perfect engineer.
- 2. To include the importance of water in industrial usage, fundamental aspects of battery chemistry, significance of corrosion it's control to protect the structures.
- 3. To imbibe the basic concepts of petroleum and its products.
- 4. To acquire required knowledge about engineering materials like cement, smart materials and Lubricants.

Course Outcomes:

- Students will acquire the basic knowledge of electrochemical procedures related to corrosion and its control.
- 2. The students are able to understand the basic properties of water and its usage in domestic and industrial purposes.
- 3. They can learn the fundamentals and general properties of polymers and other engineering materials.
- 4. They can predict potential applications of chemistry and practical utility in order to become good engineers and entrepreneurs.

UNIT - I: Water and its treatment: [8]

Introduction to hardness of water – Estimation of hardness of water by complexometric method and related numerical problems. Potable water and its specifications - Steps involved in the treatment of potable water - Disinfection of potable water by chlorination and break - point chlorination. Defluoridation - Determination of F⁻ ion by ion- selective electrode method.

Boiler troubles: Sludges, Scales and Caustic embrittlement. Internal treatment of Boiler feed water - Calgon conditioning - Phosphate conditioning - Colloidal conditioning, External treatment methods - Softening of water by ion- exchange processes. Desalination of water - Reverse osmosis.

UNIT - II Battery Chemistry & Corrosion [8]

Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basic requirements for commercial batteries. Construction, working and applications of: Zn-air and Lithium ion battery, Applications of Li-ion battery to electrical vehicles. Fuel Cells- Differences between battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell and Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells.

Corrosion: Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current methods.

UNIT - III: Polymeric materials: [8]

Definition – Classification of polymers with examples – Types of polymerization – addition (free radical addition) and condensation polymerization with examples – Nylon 6:6, Terylene **Plastics:** Definition and characteristics- thermoplastic and thermosetting plastics, Preparation, Properties and engineering applications of PVC and Bakelite, Teflon, Fiber reinforced plastics (FRP). **Rubbers:** Natural rubber and its vulcanization.

Elastomers: Characteristics –preparation – properties and applications of Buna-S, Butyl and Thiokol rubber.

Conducting polymers: Characteristics and Classification with examples-mechanism of conduction in trans-polyacetylene and applications of conducting polymers.

Biodegradable polymers: Concept and advantages - Polylactic acid and poly vinyl alcohol and their applications.

UNIT - IV: Energy Sources: [8]

Introduction, Calorific value of fuel – HCV, LCV- Dulongs formula. Classification- solid fuels: coal – analysis of coal – proximate and ultimate analysis and their significance. Liquid fuels – petroleum and its refining, cracking types – moving bed catalytic cracking. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch's process; Gaseous fuels – composition and uses of natural gas, LPG and CNG, Biodiesel – Transesterification, advantages.

UNIT - V: Engineering Materials: [8]

Cement: Portland cement, its composition, setting and hardening.

Smart materials and their engineering applications

Shape memory materials- Poly L- Lactic acid. Thermoresponse materials- Polyacryl amides, Poly vinyl amides

Lubricants: Classification of lubricants with examples-characteristics of a good lubricants - mechanism of lubrication (thick film, thin film and extreme pressure)- properties of lubricants: viscosity, cloud point, pour point, flash point and fire point.

TEXT BOOKS:

- 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010
- Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage learning, 2016
- 3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K. Shashikala, Pearson Publications, 2021.
- 4. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley Publications.

- 1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015)
- 2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011)

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

COMPUTER AIDED ENGINEERING GRAPHICS

B.Tech. I Year II Sem.

L T P C

Course Objectives:

- To develop the ability of visualization of different objects through technical drawings
- To acquire computer drafting skill for communication of concepts, ideas in the design of engineering products

Course Outcomes: At the end of the course, the student will be able to:

- Apply computer aided drafting tools to create 2D and 3D objects
- sketch conics and different types of solids
- Appreciate the need of Sectional views of solids and Development of surfaces of solids
- Read and interpret engineering drawings
- Conversion of orthographic projection into isometric view and vice versa manually and by using computer aided drafting

UNIT - I:

Introduction to Engineering Graphics: Principles of Engineering Graphics and their Significance, Scales – Plain & Diagonal, Conic Sections including the Rectangular Hyperbola – General method only. Cycloid, Epicycloid and Hypocycloid, Introduction to Computer aided drafting – views, commands and conics

UNIT-II:

Orthographic Projections: Principles of Orthographic Projections – Conventions – Projections of Points and Lines, Projections of Plane regular geometric figures. Auxiliary Planes. Computer aided orthographic projections – points, lines and planes

UNIT - III:

Projections of Regular Solids – Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views, Computer aided projections of solids – sectional views

UNIT - IV:

Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Development of surfaces using computer aided drafting

UNIT - V:

Isometric Projections: Principles of Isometric Projection – Isometric Scale – Isometric Views – Conventions – Isometric Views of Lines, Plane Figures, Simple and Compound Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of Spherical Parts. Conversion of Isometric Views to Orthographic Views and Vice-versa –Conventions. Conversion of orthographic projection into isometric view using computer aided drafting.

TEXT BOOKS:

- 1. Engineering Drawing N.D. Bhatt / Charotar
- 2. Engineering Drawing and graphics Using AutoCAD Third Edition, T. Jeyapoovan, Vikas: S. Chand and company Ltd.

REFERENCE BOOKS:

- 1. Engineering Drawing, Basant Agrawal and C M Agrawal, Third Edition McGraw Hill
- 2. Engineering Graphics and Design, WILEY, Edition 2020
- 3. Engineering Drawing, M. B. Shah, B.C. Rane / Pearson.
- 4. Engineering Drawing, N. S. Parthasarathy and Vela Murali, Oxford
- 5. Computer Aided Engineering Drawing K Balaveera Reddy et al CBS Publishers

Note: - External examination is conducted in conventional mode and internal evaluation to be done by both conventional as well as using computer aided drafting.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

BASIC ELECTRICAL ENGINEERING

B.Tech. I Year II Sem.

L T P C 2 0 0 2

Prerequisites: Mathematics **Course Objectives**:

- To understand DC and Single & Three phase AC circuits
- To study and understand the different types of DC, AC machines and Transformers.
- To import the knowledge of various electrical installations and the concept of power, power factor and its improvement.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand and analyze basic Electrical circuits
- Study the working principles of Electrical Machines and Transformers
- Introduce components of Low Voltage Electrical Installations.

Course Objectives			Program Outcomes									
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
To understand DC and Single & Three phase AC circuits.	3	2	1		2	0	0	1	2	0	1	2
To study and understand the different types of DC, AC machines and Transformers.	3	2	1	1	3	0	0	0	2	0	1	1
To import the knowledge of various electrical installations and the concept of power, power factor and its improvement.	3	2	0		3	0	0	0	1	2	1	1

Course Outcomes	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Understand and analyse basic Electrical circuits	3	2	1	0	1	0	0	0	2	0	2	2
Study the working principles of Electrical Machines and Transformers	3	2	1	0	3	1	0	1	1	2	1	2
Introduce components of Low Voltage Electrical Installations.	3	2	1	1	3	2	0	0	1	0	2	2

UNIT-I:

D.C. Circuits: Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

UNIT-II:

A.C. Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III:

Transformers: Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV:

Electrical Machines: Construction and working principle of dc machine, performance characteristics of dc shunt machine. Generation of rotating magnetic field, Construction and working of a three-phase induction motor, Significance of torque-slip characteristics. Single-phase induction motor, Construction and working. Construction and working of synchronous generator.

UNIT-V:

Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS:

- D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019.
- 2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008

- P. Ramana, M. Suryakalavathi, G.T. Chandrasheker, "Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
- M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
- 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021.
- 5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989

An Autonomous Institution

Approved by AICTE, Affiliated to INTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATA STRUCTURES

B.Tech. I Year II Sem.

LTPC 3 0 0 3

Prerequisites: Programming for Problem Solving

Course Objectives

- Exploring basic data structures such as stacks and gueues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list - singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks- Operations, array and linked representations of stacks, stack applications, Queues- operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressinglinear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, B- Trees, B+ Trees, AVL Trees, Definition, Height of an AVL Tree, Operations - Insertion, Deletion and Searching, Splay Trees.

UNIT - IV

Graphs: GraphImplementation Methods. Graph Traversal Methods.

Sorting: Quick Sort, Heap Sort, Merge Sort.

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer - Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- 2. Data Structures using C A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan, Cengage Learning. Cengage Learning.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

ENGINEERING CHEMISTRY LABORATORY

B.Tech. I Year II Sem.

LTPC

0 0 2 1

Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness of water to check its suitability for drinking purpose.
- Students are able to perform estimations of acids and bases using conductometry, potentiometry and pH metry methods.
- Students will learn to prepare polymers such as Bakelite and nylon-6 in the laboratory.
- Students will learn skills related to the lubricant properties such as saponification value, surface tension and viscosity of oils.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness of water and rate of corrosion of mild steel in various conditions.
- Able to perform methods such as conductometry, potentiometry and pH metry in order to find out the concentrations or equivalence points of acids and bases.
- Students are able to prepare polymers like bakelite and nylon-6.
- Estimations saponification value, surface tension and viscosity of lubricant oils.

List of Experiments:

- I. Volumetric Analysis: Estimation of Hardness of water by EDTA Complexometry method.
- II. Conductometry: Estimation of the concentration of an acid by Conductometry.
- III. Potentiometry: Estimation of the amount of Fe⁺² by Potentiomentry.
- IV. pH Metry: Determination of an acid concentration using pH meter.

V. Preparations:

- 1. Preparation of Bakelite.
- 2. Preparation Nylon 6.

VI. Lubricants:

- 1. Estimation of acid value of given lubricant oil.
- 2. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer.
- VII. Corrosion: Determination of rate of corrosion of mild steel in the presence and absence of inhibitor.

VIII. Virtual lab experiments

- 1. Construction of Fuel cell and its working.
- 2. Smart materials for Biomedical applications
- 3. Batteries for electrical vehicles.
- 4. Functioning of solar cell and its applications.

- Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
- 2. Vogel's text book of practical organic chemistry 5th edition
- 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications.
- 4. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New Delhi (2007).

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAΛC-Λ Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

BASIC ELECTRICAL ENGINEERING LABORATORY

B.Tech. I Year II Sem.

L T P C 0 0 2 1

Prerequisites: Basic Electrical Engineering

Course Objectives:

- To measure the electrical parameters for different types of DC and AC circuits using conventional and theorems approach.
- To study the transient response of various R, L and C circuits using different excitations.
- To determine the performance of different types of DC, AC machines and Transformers.

Course Outcomes: After learning the contents of this paper the student must be able to

- Verify the basic Electrical circuits through different experiments.
- Evaluate the performance calculations of Electrical Machines and Transformers through various testing methods.
- Analyze the transient responses of R, L and C circuits for different input conditions.

Course Objectives	Program Outcomes											
	P01	P02	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
To measure the electrical parameters for different types of DC and AC circuits using conventional and theorems approach	3	2	1		2	0	0	1	2	0	1	2
To study the transient response of various R, L and C circuits using different excitations	3	2	1	1	3	0	0	0	2	0	1	1
To determine the performance of different types of DC, AC machines and Transformers	3	2	0		3	0	0	0	1	2	1	1

Course Outcomes	Program Outcomes											
	P01	PO2	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
Verify the basic Electrical circuits through different experiments	3	2	1	0	1	0	0	0	2	0	2	2
Evaluate the performance calculations of Electrical Machines and Transformers through various testing methods	3	2	1	0	3	1	0	1	1	2	1	2

Analyse the	3	2	1	1	3	2	0	0	1	0	2	2
transient												
responses of R, L				1								
and C circuits for												
different input												
conditions												

List of experiments/demonstrations:

PART- A (compulsory)

- 1. Verification of KVL and KCL
- 2. Verification of Thevenin's and Norton's theorem
- 3. Transient Response of Series RL and RC circuits for DC excitation
- 4. Resonance in series RLC circuit
- Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits
- Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer
- 7. Performance Characteristics of a DC Shunt Motor
- 8. Torque-Speed Characteristics of a Three-phase Induction Motor.

PART-B (any two experiments from the given list)

- 1. Verification of Superposition theorem.
- Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)
- 3. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
- 4. Measurement of Active and Reactive Power in a balanced Three-phase circuit
- 5. No-Load Characteristics of a Three-phase Alternator

TEXT BOOKS:

- 1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition,
- MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

- P. Ramana, M. Suryakalavathi, G.T.Chandrasheker, "Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
- M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
- 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021.
- 5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011,
- 6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATA STRUCTURES LAB

B.Tech. I Year II Sem.

LTPC

Prerequisites: A Course on "Programming for problem solving".

Course Objectives:

- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.
- Ability to Implement searching and sorting algorithms

List of Experiments:

1.	Write a program	that use	s functions	to perform	the following	operations	on singly	linked
	list.:							

- i) Creation
- ii) Insertion
- iii) Deletion
- iv) Traversal
- Write a program that uses functions to perform the following operations on doubly linked list.:
 - i) Creation
- ii) Insertion
- iii) Deletion
- iv) Traversal
- 3. Write a program that uses functions to perform the following operations on circular linked list.:
 - i) Creation
- ii) Insertion
- iii) Deletion
- iv) Traversal
- 4. Write a program that implement stack (its operations) using
 - i) Arrays
- ii) Pointers
- 5. Write a program that implement Queue (its operations) using
 - i) Arrays
- ii) Pointers
- 6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order
 - i) Quick sort
- ii) Heap sort
- iii) Merge sort
- 7. Write a program to implement the tree traversal methods(Recursive and Non Recursive).
- 8. Write a program to implement
 - i) Binary Search tree
- ii) B Trees
- iii) B+ Trees
-) AVL

trees

- v) Red Black trees
- 9. Write a program to implement the graph traversal methods.
- 10. Implement a Pattern matching algorithms using Boyer- Moore, Knuth-Morris-Pratt

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- 2. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage Learning.

u. swallin

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

IT WORKSHOP

B.Tech. I Year II Sem.

COMMON TO CSE, CSE(DS) & CSE(AIML)

LTPC

Course Objectives: The IT Workshop for engineers is a training lab course spread over 60 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, PowerPoint and Publisher.

Course Outcomes:

- Perform Hardware troubleshooting
- Understand Hardware components and inter dependencies
- Safeguard computer systems from viruses/worms
- Document/ Presentation preparation
- Perform calculations using spreadsheets

PC Hardware

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: **Search Engines & Netiquette:** Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of LaTeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX

and word - Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using LaTeX and Word to create a project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Task 3: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Task 4: Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2 : Calculating GPA - . Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

Powerpoint

Task 1: Students will be working on basic power point utilities and tools which help them create basic powerpoint presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting -Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

REFERENCE BOOKS:

- 1. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech
- 2. The Complete Computer upgrade and repair book, 3rd edition Cheryl A Schmidt, WILEY Dreamtech
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. PC Hardware A Handbook Kate J. Chase PHI (Microsoft)
- LaTeX Companion Leslie Lamport, PHI/Pearson.
- IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme. – CISCO Press, Pearson Education.
- IT Essentials PC Hardware and Software Labs and Study Guide Third Edition by Patrick Regan

 CISCO Press, Pearson Education.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DISCRETE MATHEMATICS

B.Tech. II Year I Sem.

LTPC

Course Objectives:

- Introduces elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, algebraic structures, elementary graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes:

- Understand and construct precise mathematical proofs
- Apply logic and set theory to formulate precise statements
- Analyze and solve counting problems on finite and discrete structures
- Describe and manipulate sequences
- Apply graph theory in solving computing problems

UNIT - I

Mathematical logic: Introduction, Statements and Notation, Connectives, Normal Forms, Theory of Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus.

UNIT - II

Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions.

UNIT - III

Algebraic Structures: Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as Partially Ordered Sets, Boolean Algebra.

UNIT - IV

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutation with Constrained Repetitions, Binomial Coefficient, The Binomial and Multinomial Theorems, The Principle of Exclusion.

UNIT-V

Graph Theory: Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multi-graphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem.

TEXT BOOKS:

- Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
- 2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe I. Mott, Abraham Kandel, Teodore P. Baker, Prentis Hall of India, 2nd ed.

REFERENCE BOOKS:

Discrete and Combinatorial Mathematics - an applied introduction: Ralph.P. Grimald, Pearson education, 5th edition.

2. Discrete Mathematical Structures: Thomas Kosy, Tata McGraw Hill publishing co.

May

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. II Year I Sem.

LTPC

Course Objectives

- To Understand the basic object-oriented programming concepts and apply them in problem solving.
- To Illustrate inheritance concepts for reusing the program.
- To Demonstrate multitasking by using multiple threads and event handling
- To Develop data-centric applications using JDBC.
- To Understand the basics of java console and GUI based programming

Course Outcomes

- Demonstrate the behavior of programs involving the basic programming constructs like control structures, constructors, string handling and garbage collection.
- Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by using extend and implement keywords
- Use multithreading concepts to develop inter process communication.
- Understand the process of graphical user interface design and implementation using AWT or swings.
- Develop applets that interact abundantly with the client environment and deploy on the server.

UNIT - I

Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and lifetime of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT - II

Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III

Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception subclasses. String handling, Exploring java.util. Differences between multithreading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads. Enumerations, autoboxing, annotations, generics.

UNIT - IV

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components-labels, button, canvas, scrollbars, text components, check box, checkbox groups, choices,

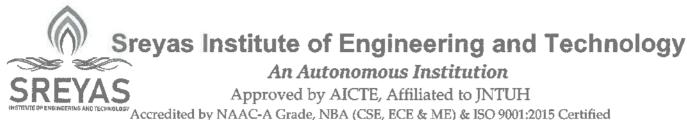
An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT - V

Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets. Swing – Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing- JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons – The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.


TEXT BOOKS:

- 1. Java the complete reference, 7th edition, Herbert schildt, TMH.
- 2. Understanding OOP with Java, updated edition, T. Budd, Pearson education.

REFERENCE BOOKS:

- An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch, John wiley & sons.
- 2. An Introduction to OOP, third edition, T. Budd, Pearson education.
- 3. Introduction to Java programming, Y. Daniel Liang, Pearson education.
- 4. An introduction to Java programming and object-oriented application development, R.A. Johnson-Thomson.
- 5. Core Java 2, Vol 1, Fundamentals, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education.
- 6. Core Java 2, Vol 2, Advanced Features, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education
- 7. Object Oriented Programming with Java, R.Buyya, S.T.Selvi, X.Chu, TMH.
- 8. Java and Object Orientation, an introduction, John Hunt, second edition, Springer. 9. Maurach's Beginning Java2 JDK 5, SPD.

Why gathing hales

Computer Organization and Architecture

B.Tech. II Year I Sem.

LTPC

Co-requisite: A Course on "Digital Electronics".

Course Objectives

- The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
- It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.
- Topics include computer arithmetic, instruction set design, micro programmed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors

Course Outcomes

- Understand the basics of instruction sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arlthmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT - II

Micro programmed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT-IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics. Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor. Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence

15

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH ⁶⁴Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOK:

- 1. Computer System Architecture M. Morris Mano, Third Edition, Pearson/PHI. **REFERENCE BOOKS:**
- 1. Computer Organization Carl Hamacher, Zvonks Vranesic, SafeaZaky, V th Edition, McGraw
- 2. Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI.

3. Structured Computer Organization - Andrew S. Tanenbaum, 4 th Edition, PHI/Pearson.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SOFTWARE ENGINEERING

B.Tech. II Year I Sem.

L T P C 3 0 0 3

Course Objectives

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

- Ability to translate end-user requirements into system and software requirements, using e.g. UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design
 of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths. **A Generic view of process**: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI). **Process models**: The waterfall model, Spiral model and Agile methodology

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model. Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging. Metrics for Process and Products: Software measurement, metrics for software quality.

UNIT-V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM. **Quality Management:** Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.

2. Software Engineering- Sommerville, 7th edition, Pearson Education.

inthous

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

REFERENCE BOOKS:

- 1. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.
- 2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
- 3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.
- 4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

y swalli

35

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

OPERATING SYSTEMS

B.Tech. II Year I Sem.

3 0 0 3

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Computer Organization and Architecture".

Course Objectives:

- Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Will be able to control access to a computer and the files that may be shared
- Demonstrate the knowledge of the components of computers and their respective roles in computing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

UNIT - I

Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls

Process - Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads

UNIT - II

CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling. System call interface for process management-fork, exit, wait, waitpid, exec

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III

Process Management and Synchronization - The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors **Interprocess Communication Mechanisms:** IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV

Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms.

UNIT-V

File System Interface and Operations -Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, Iseek, stat, ioctl system calls.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
- 2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition-2005, Pearson Education/PHI

p. Hilly J. Swalling

- 2. Operating System A Design Approach- Crowley, TMH.
- 3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
- 4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
- 5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

OPERATING SYSTEMS LAB

B.Tech. II Year I Sem.

LTPC

Prerequisites: A course on "Programming for Problem Solving", A course on "Computer Organization and Architecture".

Co-requisite: A course on "Operating Systems".

Course Objectives:

- To provide an understanding of the design aspects of operating system concepts through simulation
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
- Able to implement C programs using Unix system calls

List of Experiments:

- 1. Write C programs to simulate the following CPU Scheduling algorithms a) FCFS b) SJF c) Round Robin d) priority
- 2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
- 3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
- 4. Write a C program to implement the Producer Consumer problem using semaphores using UNIX/LINUX system calls.
- 5. Write C programs to illustrate the following IPC mechanisms a) Pipes b) FIFOs c) Message Queues d) Shared Memory
- 6. Write C programs to simulate the following memory management techniques a) Paging b) Segmentation
- 7. Write C programs to simulate Page replacement policies a) FCFS b) LRU c) Optimal

TEXT BOOKS:

- Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley
- 2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

REFERENCE BOOKS:

- 1. Operating Systems Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
- 4. UNIX Programming Environment, Kernighap and Pike, PHI/Pearson Education
- 5. UNIX Internals: The New Frontiers, U. Vañalia, Pearson Education

the p

y, such

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

JAVA LAB

B.Tech. II Year I Sem.

L T P C 0 0 3 1.5

Course Objectives:

- To understand OOP principles.
- To understand the Exception Handling mechanism.
- To understand Java collection framework.
- To understand multithreaded programming.
- To understand swing controls in Java.

Course Outcomes:

- Able to write the programs for solving real world problems using Java OOP principles.
- Able to write programs using Exceptional Handling approach.
- Able to write multithreaded applications.
- Able to write GUI programs using swing controls in Java.

List of Experiments:

- Use Eclipse or Net bean platform and acquaint yourself with the various menus.
 Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
- 2. Write a Java program to demonstrate the OOP principles. [i.e., Encapsulation, Inheritance, Polymorphism and Abstraction]
- 3. Write a Java program to handle checked and unchecked exceptions. Also, demonstrate the usage of custom exceptions in real time scenario.
- Write a Java program on Random Access File class to perform different read and write operations.
- 5. Write a Java program to demonstrate the working of different collection classes. [Use package structure to store multiple classes].
- 6. Write a program to synchronize the threads acting on the same object. [Consider the example of any reservations like railway, bus, movie ticket booking, etc.]
- 7. Write a program to perform CRUD operations on the student table in a database using JDBC.
- 8. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
- Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired. [Use Adapter classes]

B.Tech-R22

4 1159

www.sreyas.ac.in

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

REFERENCE BOOKS:

- 1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition Pearson education.
- 2. Thinking in Java, Bruce Eckel, Pearson Education.
- 3. Java Programming, D. S. Malik and P. S. Nair, Cengage Learning. Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell, Pearson.

q. Hile

hlidi

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

SREYAS

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SOFTWARE ENGINEERING LAB

B.Tech.IIYear I Sem.

LT P C 0 0 2 1

Prerequisites

Acourseon "ProgrammingforProblem Solving".

Co-requisite

ACourseon"SoftwareEngineering".

CourseObjectives:

 Tohavehandsonexperienceindevelopingasoftwareprojectbyusingvarioussoftware engineering principles and methods in each of the phases of software development.

CourseOutcomes:

- Abilitytotranslateend-userrequirementsintosystemandsoftwarerequirements
- Abilitytogenerateahigh-leveldesignofthesystemfromthesoftwarerequirements
- Willhaveexperienceand/orawarenessof testingproblemsandwill beabletodevelopa simple testing report

Listof Experiments

Dothefollowingsevenexercisesforany twoprojectsgiveninthelist of sampleprojectsor any other Projects:

- 1. Developmentofproblemstatements.
- 2. PreparationofSoftwareRequirementSpecificationDocument,DesignDocumentsandTesting Phase related documents.
- ${\tt 3.\ Preparation of Software Configuration Management and Risk Management related documents}.$
- 4. StudyandusageofanyDesignphaseCASE tool
- 5. PerformingtheDesignbyusinganyDesignphaseCASEtools.
- 6. Developtestcasesforunittestingandintegrationtesting
- 7. Developtestcasesforvariouswhiteboxandblackboxtestingtechniques.

Sample Projects:

- 1. PassportautomationSystem
- 2. BookBank
- 3. OnlineExamRegistration
- 4. StockMaintenanceSystem
- 5. Onlinecoursereservationsystem
- 6. E-ticketing
- 7. SoftwarePersonnelManagementSystem
- 8. CreditCardProcessing
- 9. E-bookmanagementSystem.
- 10. Recruitmentsystem

TEXTBOOKS:

- 1. SoftwareEngineering,Apractitioner'sApproach-RogerS.Pressman,6thedition,McGraw Hill International Edition.
- 2. Software Engineering-Sommerville, 7th edition, Pearson Education.
- 3. TheunifiedmodelinglanguageuserguideGradyBooch,JamesRambaugh,IvarJacobson, Pearson Education.

REFERENCEBOOKS:

- 1. SoftwareEngineering,anEngineeringapproach-JamesF.Peters,WitoldPedrycz,John Wiley.
- 2. Software Engineering principles and practice-Waman SJawadekar, The McGraw-Hill

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SKILL DEVELOPMENT COURSE (NODE JS/ REACT JS/ DJANGO)

B.Tech. II Year I Sem.

Prerequisites: Object Oriented Programming through Java, HTML Basics **Course Objectives:**

- To implement the static web pages using HTML and do client side validation using JavaScript.
- To design and work with databases using Java
- To develop an end to end application using java full stack.
- To introduce Node JS implementation for server side programming.
- To experiment with single page application development using React.

Course Outcomes: At the end of the course, the student will be able to,

- Build a custom website with HTML, CSS, and Bootstrap and little JavaScript.
- Demonstrate Advanced features of JavaScript and learn about JDBC
- Develop Server side implementation using Java technologies like
- Develop the server side implementation using Node JS.
- Design a Single Page Application using React.

Exercises:

- 1. Build a responsive web application for shopping cart with registration, login, catalog and cart pages using CSS3 features, flex and grid.
- 2. Make the above web application responsive web application using Bootstrap framework.
- 3. Use JavaScript for doing client side validation of the pages implemented in experiment 1 and experiment 2.
- 4. Explore the features of ES6 like arrow functions, callbacks, promises, async/await. Implement an application for reading the weather information from openweathermap.org and display the information in the form of a graph on the web page.
- 5. Develop a java stand alone application that connects with the database (Oracle / mySql) and perform the CRUD operation on the database tables.
- Create an xml for the bookstore. Validate the same using both DTD and XSD.
- 7. Design a controller with servlet that provides the interaction with application developed in experiment 1 and the database created in experiment 5.
- 8. Maintaining the transactional history of any user is very important. Explore the various session tracking mechanism (Cookies, HTTP Session)
- 9. Create a custom server using http module and explore the other modules of Node JS like OS, path, event.
- 10. Develop an express web application that can interact with REST API to perform CRUD operations on student data. (Use Postman)
- 11. For the above application create authorized end points using JWT (JSON Web Token).
- 12. Create a react application for the student management system having registration, login, contact, about pages and implement routing to navigate through these pages.
- 13. Create a service in react that fetches the weather information from openweathermap.org and the display the current and historical weather information using graphical representation using chart.is
- 14. Create a TODO application in react with necessary components and deploy it into github.

REFERENCE BOOKS:

1. Jon Duckett, Beginning HTML, XHTML, CS and JavaScript, Wrox Publications, 2010

Bryan Basham, Kathy Sierra and Bert Bates, Head First Servlets and JSP, O'Reilly Media, 2nd V. S. Edition. 2008.

3. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, A Press.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

CONSTITUTION OF INDIA

B.Tech. II Year I Sem.

LTPC

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
- Discuss the passage of the Hindu Code Bill of 1956.

Unit - 1 History of Making of the Indian Constitution- History of Drafting Committee.

Unit - 2 Philosophy of the Indian Constitution- Preamble Salient Features

Unit - 3 Contours of Constitutional Rights & Duties - Fundamental Rights

- Right to Equality
- Right to Freedom
- Right against Exploitation
- Right to Freedom of Religion
- Cultural and Educational Rights
- Right to Constitutional Remedies
- Directive Principles of State Policy
- Fundamental Duties.

Unit - 4 Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

Unit - 5 Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit - 6 Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBO and women.

Suggested Reading:

- 1. The Constitution of India, 1950 (Bare Act), Covernment Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edg., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

J. coulli

An Autonomous Institution

Approved by AICTE, Affiliated to INTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

HUMAN VALUES AND ETHICS

B.Tech. II Year I Sem.

PC

Prerequisites: This course has no specific prerequisite and co-requisite.

Course Objectives:

- To help the students appreciate the essential complementarily between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity, which are the core aspirations of all human beings
- To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of Existence. Such a holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way
- To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually enriching interaction with Nature

Course Outcomes: At the end of the course, the student will be able to

- Analyze the process of self-exploration, right understanding, relationships, natural acceptance for achieving ultimate happiness To design and work with databases using Java
- Examine human being as a co-existence of self 'I' and the material 'Body
- Correlate the universal harmonious order in society, undivided society and from family to world family.
- interpret the harmony in nature, holistic perception at all levels of existence.
- Analyze professional competence for augmenting universal human order, ethical human conduct for acceptance of human values.

UNIT - I

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education: Purpose and motivation for the course, recapitulation from Universal Human Values-1; Self-Exploration what is it? -its content and process; 'Natural Acceptance' and Experiential Validation - as the process for self-exploration; Continuous Happiness and Prosperity- A look at basic human aspiration; Right Understanding, Relationship and Phys- ical facility; Understanding Happiness and Prosperity correctly; Method to fulfill the above Human Aspirations; Understanding and living in harmony at different levels.

UNIT - II

Understanding harmony in the Human Being- Harmony in Myself !: Understand- ing human being as a co-existence of the sentient 'l' and the material 'Body'. Understanding the needs of Self ('l') and 'Body'-happiness and physical facility; Understanding the body as an instrument of 'I"; Understanding the characteristics and activities of 'I' and harmony 'I"; Understanding the harmony of 'I' with the body: Sanyam and health; Correct appraisal of physical needs, meaning of prosperity in detail; Programs to ensure Sanyam and Health.

Understanding Harmony in the Family and Society-Harmony in Human-tuman Relationship: Visually Understanding values in human-human relationship: relationships) and program for its fulfillment to ensure mutual happiness: Trust and Respect as the foundational values of relationship; Understanding the meaning of Trust; difference between intention and competence: Understanding the meaning of respect, Difference between respect and differentiation; the other salient values in rela-tionship; Understanding harmony in the society; Visualizing a universal harmonious order in society.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV

Understanding Harmony in the Nature and Existence - Whole existence as Co- existence: Understanding the harmony in the Nature; Interconnectedness and mutual ful- fillment among the four orders of nature-recyclability and self-regulation in nature; Un- derstanding Existence as Co-existence of mutually interacting units in all-pervasive space; Holistic perception of harmony at all levels of existence.

UNIT - V

Implications of the above Holistic Understanding of Harmony on Professional **Ethics**: Natural Acceptance of Human Values; Definitiveness of Ethical Human Conduct; Basics for Humanistic Education, Humanistic Constitution and Humanistic Universal Order; Competence in professional ethics; Case studies of typical holistic technologies, management models and productive systems; Strategy for transition from the present state to Universal Human Order.

TEXT BOOKS:

 Human values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, 1St Edition, Excel Books, New Delhi, 2010

REFERENCE BOOKS:

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999
- 2. Human Values, A. N. Tripathi, 3rd Edition New age Intl. Publishers, New Delhi, 2019

J. swalli

 The Story of My Experiments with Truth- by Mohandas Karamchand Gandhi, 1st Edi-tion, Fingerprint Publishing, 2009

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

MATHEMATICAL AND STATISTICAL FOUNDATIONS

B.Tech. II Year I! Sem.(CSE(AIML))

L T P C 3 0 0 3

Prerequisites: Mathematics courses of first year of study.

Course Objectives:

- The Number Theory basic concepts useful for cryptography etc
- The theory of Probability, and probability distributions of single and multiple random variables
- The sampling theory and testing of hypothesis and making inferences
- The concepts of correlation and regression

Course Outcomes: After learning the contents of this course, the student must be able to

- Apply the number theory concepts to cryptography domain
- Apply the concepts of probability and distributions to some case studies
- Correlate the material of one unit to the material in other units
- Resolve the potential misconceptions and hazards in each topic of study.

UNIT - I

Greatest Common Divisors and Prime Factorization: Greatest common divisors, The Euclidean algorithm, The fundamental theorem of arithmetic, Factorization of integers and the Fermat numbers Congruences: Introduction to congruences, Linear congruences, The Chinese remainder theorem, Systems of linear congruences.

UNIT – II

Probability Theory: Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Baye's Rule, Naïve's Baye's rule.

Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions, Statistical Independence.

Discrete Probability Distributions: Bernouli's Distribution, Binomial Distribution, Poisson distribution.

UNIT – III

Continuous Probability Distributions: Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial distribution.

Fundamental Sampling Distributions: Random Sampling, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, Sampling Distribution of chi-Square distribution, t-Distribution, F- Distribution.

UNIT - IV

Estimation & Tests of Hypotheses: Introduction, Statistical Inference, Classical Methods of Estimation. Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Tolerance Limits, Estimating the Variance, Estimating a Proportion for single mean, Difference between Two Means, between Two Proportions for Two Samples and Maximum Likelihood Estimation.

UNIT - V

Simple Linear Regression and Correlation: Introduction to Linear Regression, The Simple Linear Regression Model, Least Squares and the Fitted Model, Properties of the Least Squares Estimators, Inferences Concerning the Regression Coefficients, Prediction.

go approxima

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- Kenneth H. Rosen, Elementary number theory & its applications, sixth edition, Addison-Wesley, ISBN 978 0-321-50031-1
- 2. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers.
- 3. Miller and Freund's, Probability and Statistics for Engineers, 8th Edition, Pearson Educations.

REFERENCE BOOK:

- 1. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications
- 2. T.T. Soong, Fundamentals of Probability And Statistics For Engineers, John Wiley & Sons Ltd, 2004.
- 3. Sheldon M Ross, Probability and statistics for Engineers and scientists, Academic Press.

* aprilanted on

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

AUTOMATA THEORY AND COMPILER DESIGN

B.Tech. II Year I! Sem.

3 0 0 3

Prerequisite: Nil Course Objectives

- To introduce the fundamental concepts of formal languages, grammars and automata theory.
- To understand deterministic and non-deterministic machines and the differences between decidability and undecidability.
- Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills necessary for constructing a compiler.
- Topics include phases of compiler, parsing, syntax directed translation, type checking use of symbol tables, intermediate code generation

Course Outcomes

- Able to employ finite state machines for modeling and solving computing problems.
- Able to design context free grammars for formal languages.
- · Able to distinguish between decidability and undecidability.
- Demonstrate the knowledge of patterns, tokens & regular expressions for lexical analysis.
- Acquire skills in using lex tool and design LR parsers

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA to DFA

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications of the Pumping Lemma.

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Parse Trees, Ambiguity in Grammars and Languages.

UNIT - III

Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA and CFG's, Acceptance by final state

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines

LINIT - IV

Introduction: The structure of a compiler,

Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The

Lexical- Analyzer Generator Lex,

Syntax Analysis: Introduction, Context-Free Grammars, Writing a Grammar, Top-Down Parsing,

B.Tech-R22

44 h Ju

ww.sreyas.ac.in

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Bottom- Up Parsing, Introduction to LR Parsing: Simple LR, More Powerful LR Parsers

UNIT - V

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's.

Intermediate-Code Generation: Variants of Syntax Trees, Three-Address Code

Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management

TEXT BOOKS:

- Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
- 2. Theory of Computer Science Automata languages and computation, Mishra and Chandrashekaran, 2nd Edition, PHI.

REFERENCE BOOKS:

- Compilers: Principles, Techniques and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, 2nd Edition, Pearson.
- 2. Introduction to Formal languages Automata Theory and Computation, Kamala Krithivasan, Rama R, Pearson.
- 3. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 4. lex & yacc John R. Levine, Tony Mason, Doug Brown, O'reilly Compiler Construction, Kenneth C. Louden, Thomson. Course Technology.

i. Aid 1. July . B.

www.sreyas.ac.in

45

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATABASE MANAGEMENT SYSTEMS

B.Tech. II Year II Sem.

3 0 0 3

Prerequisites: A course on "Data Structures".

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS **Introduction to Database Design**: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/altering tables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

UNIT-V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

1. Database System Goncepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition

2. Database Manage Very Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill

J. gworth

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

REFERENCE BOOKS:

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

G. Hilly b. Sender

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH
Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

B.Tech. II Year II Sem.

LTPC

Prerequisite: Knowledge on Data Structures.

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning.
- To understand the concepts of state space representation, exhaustive search, heuristic
- search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- Learn the distinction between optimal reasoning Vs human like reasoning and formulate an
 efficient problem space for a problem expressed in natural language. Also select a search
 algorithm for a problem and estimate its time and space complexities.
- Apply AI techniques to solve problems of game playing, theorem proving, and machine learning.
- Learn different knowledge representation techniques.
- Understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- Comprehend the applications of Probabilistic Reasoning and Bayesian Networks.
- Analyze Supervised Learning Vs. Learning Decision Trees

UNIT - I

Introduction to AI - Intelligent Agents, Problem-Solving Agents,

Searching for Solutions - Breadth-first search, Depth-first search, Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces.

UNIT-II

Games - Optimal Decisions in Games, Alpha–Beta Pruning, Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Knowledge-Based Agents, **Logic-** Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses.

UNIT-III

First-Order Logic - Syntax and Semantics of First-Order Logic, Using First Order Logic, Knowledge Engineering in First-Order Logic. Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events.

UNIT-IV

Planning - Definition of Classical Planning, Algorithms for Planning with State Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches. Hierarchical Planning.

UNIT-V

Probabilistic Reasoning:

Acting under Uncertainty, Basic Probability Notation Bayes' Rule and Its Use, Probabilistic Reasoning,

B.Tech-R22

- M W

www.sreyas.ac.in

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, EfficientRepresentation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability.

TEXT BOOK:

1. Artificial Intelligence: A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

REFERENCE BOOKS:

- 1. Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

www.sreyas.ac.in

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

PYTHON PROGRAMMING

B.Tech. Il Year Il Sem.

Prerequisites: A course on "Programming for Problem Solving using C".

Course Objectives:

- Learn Syntax and Semantics and create Functions in Python.
- Handle Strings and Files in Python.
- Understand Lists, Dictionaries and Regular expressions in Python.
- Build Database Applications in Python.
- Construct data visualization by using various Python modules.

Course Outcomes:

- Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
- Demonstrate proficiency in handling Strings and File Systems.
- Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
- Implement exemplary applications related to Databases in Python.
- Implement the concepts of data visualization in Python.

UNIT - I

Python Basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, **Unsupported Types**

Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions, Related Modules

Sequences - Strings, Lists, and Tuples, Mapping and Set Types

FILES: File Objects, File Built-in Function, File Built-in Attributes, Standard Files, Command-line Arguments

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management, *Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, *Creating Exceptions Modules: Importing Modules, Importing Module Attributes, ModuleBuilt-in Functions, Packages

UNIT - III

Regular Expressions: Introduction, Special Symbols and Characters, Res and Python Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and the Global Interpreter Lock, Thread Module, Threading Module, Related Modules

UNIT - IV

Database Programming: Introduction, Python Database Application Programmer's Interface (DB-API),

Python-Sqlite Connectivity, Object Relational Managers (ORMs), Related Modules

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V

Numpy, Pandas, Sklearn,, Matplotlib, Seaborn

TEXT BOOK:

1. Core Python Programming, Wesley J. Chun, Second Edition, Pearson.

REFERENCE BOOKS:

- 1. Think Python, Allen Downey, Green Tea Press
- 2. Introduction to Python, Kenneth A. Lambert, Cengage
- 3. Python Programming: A Modern Approach, Vamsi Kurama, Pearson

4. Learning Python, Mark Lutz, O'Really.

GA G. Hilly h. Javela.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

DATABASE MANAGEMENT SYSTEMS LAB

B.Tech. II Year II Sem.

L T P C 0 0 3 1.5

Co-requisites: "Database Management Systems"

Course Objectives:

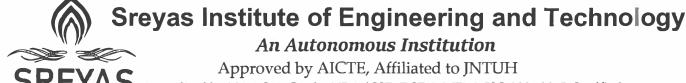
- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes:

- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:

- 1. Concept design with E-R Model
- 2. Relational Model
- 3. Normalization
- 4. Practicing DDL commands
- 5. Practicing DML commands
- 6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.)
 - B. Nested, Correlated subqueries
- 7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
- 8. Triggers (Creation of insert trigger, delete trigger, update trigger)
- 9. Procedures
- 10. Usage of Cursors


TEXT BOOKS:

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill, 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

REFERENCE BOOKS:

- Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th
 Edition
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C.J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition

illies. V

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

PYTHON PROGRAMMING LABORATORY

B.Tech. II Year II Sem.

0 3 1.5

Course Objectives:

- To install and run the Python interpreter
- To learn control structures.
- To Understand Lists, Dictionaries in python
- To Handle Strings and Files in Python

Course Outcomes: After completion of the course, the student should be able to

- Develop the application specific codes using python.
- Understand Strings, Lists, Tuples and Dictionaries in Python
- Verify programs using modular approach, file I/O, Python standard library
- Implement Digital Systems using Python

Note: The lab experiments will be like the following experiment examples

Week -1:

- 1. i) Use a web browser to go to the Python website http://python.org. This page contains information about Python and links to Python-related pages, and it gives you the ability to search the Python documentation.
 - ii) Start the Python interpreter and type help() to start the online help utility.
- 2. Start a Python interpreter and use it as a Calculator.

- i) Write a program to calculate compound interest when principal, rate and number of periods are
- ii) Given coordinates (x1, y1), (x2, y2) find the distance between two points
- 4. Read name, address, email and phone number of a person through keyboard and print the details.

Week - 2:

- 1. Print the below triangle using for loop.

 - 44
 - 333
 - 2222
 - 11111
- 2. Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder)
- 3. Python Program to Print the Fibonacci sequence using while loop
- 4. Python program to print all prime numbers in a given interval (use break)

Week - 3:

- 1. i) Write a program to convert a list and tuple into arrays.
 - ii) Write a program to find common values between two arrays.
- 2. Write a function called gcd that takes parameters a and b and returns their greatest common divisor.
- 3. Write a function called palindrome that takes a string argument and returnsTrue if it is a palindrome and False otherwise. Remember that you can use the built-in function len to check the length of a string.

Week - 4:

1. Write a function called is_sorted that takes a list as a parameter and returns will list is sorted in ascending order and False otherwise.

2. Write a function called has duplicates that takes a list and returns True if here is any element that appears more than once. It should not modify the original list.

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

- i). Write a function called remove_duplicates that takes a list and returns a new list with only the unique elements from the original. Hint: they don't have to be in the same order.
- ii). The wordlist I provided, words.txt, doesn't contain single letter words. So you might want to add "I", "a", and the empty string.
- iii). Write a python code to read dictionary values from the user. Construct a function to invert its content. i.e., keys should be values and values should be keys.
- 3. i) Add a comma between the characters. If the given word is 'Apple', it should become 'A,p,p,l,e'
 - ii) Remove the given word in all the places in a string?
 - iii) Write a function that takes a sentence as an input parameter and replaces the first letter of every word with the corresponding upper case letter and the rest of the letters in the word by corresponding letters in lower case without using a built-in function?
- 4. Writes a recursive function that generates all binary strings of n-bit length

Week - 5:

- 1. i) Write a python program that defines a matrix and prints
 - ii) Write a python program to perform addition of two square matrices
 - iii) Write a python program to perform multiplication of two square matrices
- 2. How do you make a module? Give an example of construction of a module using different geometrical shapes and operations on them as its functions.
- 3. Use the structure of exception handling all general purpose exceptions.

Week-6:

- a. Write a function called draw_rectangle that takes a Canvas and a Rectangle as arguments and draws a representation of the Rectangle on the Canvas.
 - b. Add an attribute named color to your Rectangle objects and modify draw_rectangle so that it uses the color attribute as the fill color.
 - c. Write a function called draw_point that takes a Canvas and a Point as arguments and draws a representation of the Point on the Canvas.
 - d. Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw_circle that draws circles on the canvas.
- Write a Python program to demonstrate the usage of Method Resolution Order (MRO) in multiple levels of Inheritances.
- Write a python code to read a phone number and email-id from the user and validate it for correctness.

Week-7

- 1. Write a Python code to merge two given file contents into a third file.
- Write a Python code to open a given file and construct a function to check for given words present in it and display on found.
- 3. Write a Python code to Read text from a text file, find the word with most number of occurrences
- 4. Write a function that reads a file file1 and displays the number of words, number of vowels, blank spaces, lower case letters and uppercase letters.

Week - 8:

- 1. Import numpy, Plotpy and Scipy and explore their functionalities.
- 2. a) Install NumPy package with pip and explore it.
- 3. Write a program to implement Digital Logic Gates AND, OR, NOT, EX-OR
- 4. Write a program to implement Half Adder, Full Adder, and Parallel Adder
- 5. Write a GUI program to create a window wizard having two text labels, two text fields and two buttons as Submit and Reset.

v. swith

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

TEXT BOOKS:

- 1. Supercharged Python: Take your code to the next level, Overland
- 2. Learning Python, Mark Lutz, O'reilly

REFERENCE BOOKS:

- 1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 2. Python Programming A Modular Approach with Graphics, Database, Mobile, and Web Applications, Sheetal Taneja, Naveen Kumar, Pearson
- 3. Programming with Python, A User's Book, Michael Dawson, Cengage Learning, India Edition
- 4. Think Python, Allen Downey, Green Tea Press
- 5. Core Python Programming, W. Chun, Pearson
- 6. Introduction to Python, Kenneth A. Lambert, Cengage

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

SKILL DEVELOPMENT COURSE (PROLOG/ LISP/ PYSWIP)

B.Tech. II Year II Sem.

LTPC

0 0 2 1

List of Programs:

- 1. Write simple fact for following:
 - A. Ram likes mango.
 - B. Seema is a girl.
 - C. Bill likes Cindy.
 - D. Rose is red.
 - E. John owns gold
- 2. Write predicates one converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below freezing.
- 3. Write a program to solve the Monkey Banana problem
- 4. WAP in turbo prolog for medical diagnosis and show the advantages and disadvantages of green and red cuts.
- 5. Write a program to solve the 4-Queen problem.
- 6. Write a program to solve traveling salesman problems.
- 7. Write a program to solve water jug problems using Prolog.
- 8. Write simple Prolog functions such as the following. Take into account lists which are too short.
 -- remove the Nth item from the list. -- insert as the Nth item.
- 9. Assume the prolog predicate gt(A, B) is true when A is greater than B. Use this predicate to define the predicate addLeaf(Tree, X, NewTree) which is true if NewTree is the Tree produced by adding the item X in a leaf node. Tree and NewTree are binary search trees. The empty tree is represented by the atom nil.
- 10. Write a Prolog predicate, countLists(Alist, Ne, Nl), using accumulators, that is true when NI is the number of items that are listed at the top level of Alist and Ne is the number of empty lists. Suggestion: First try to count the lists, or empty lists, then modify by adding the other counter.
- 11. Define a predicate memCount(AList,Blist,Count) that is true if Alist occurs Count times within Blist. Define without using an accumulator. Use "not" as defined in utilities.pro, to make similar cases are unique, or else you may get more than one count as an answer.

B.Tech-R22

Ald 4 June

www.sreyas.ac.in

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Examples: memCount(a,[b,a],N). N = 1; no memCount(a,[b,[a,a,[a],c],a],N). N = 4; no memCount([a],[b,[a,a,[a],c],a],N). N = 1; No

REFERENCE BOOK:

1. PROLOG: Programming for Artificial Intelligence, 3e, by BRATKO, WILEY

h Bali. Bal

B.Tech-R22

An Autonomous Institution

Approved by AICTE, Affiliated to INTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

GENDER SENSITIZATION LAB

B.Tech. II Year II Sem.

COURSE DESCRIPTION

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines - such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies - to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes

- > Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- > Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- > Students will acquire insight into the gendered division of labor and its relation to politics and economics.
- > M eamd women students and professionals will be better equipped to work and live together as equals.
- > Students will develop a sense of appreciation of women in all walks of life.
- > Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT-I: UNDERSTANDING GENDER

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: M akilogomen, M

- Preparing for Womanhood. Growing up M aleirst lessons in Caste.

UNIT - II: GENDER ROLES AND RELATIONS

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT - III: GENDER AND LABOUR

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work. -Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

UNIT - IV: GENDER - BASED VIOLENCE

The Concept of Violence-Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No!-Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: "Chupulu".

Domestic Violence: Speaking Outls Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

UNIT - V: GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-The Brave Heart.

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender".

ESSENTIAL READING: The Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A.Suneetha, Uma Bhrugubanda, DuggiralaVasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu **published by Telugu Akademi, Telangana Government in 2015.**

ASSESSMENT AND GRADING:

Discussion & Classroom Participation: 20%

Project/Assignment: 30%

End Term Exam: 50%

V. Carolli

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA & ISO 9001:2015 Certified

DEPARTMENT OF CSE (AI&ML)

DESIGN AND ANALYSIS OF ALGORITHMS

B.Tech. III Year I Sem.

LTPC

3 1 0 4

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Advanced Data Structures".

Course Objectives:

- 1. Introduces the notations for analysis of the performance of algorithms.
- 2. Introduces the data structure of disjoint sets.
- 3. Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic Programming, greedy, branch and bound methods) and mention problems for which eachtechnique is appropriate
- 4. Describes how to evaluate and compare different algorithms using worst-, average-, and bestcase analysis.
- 5. Explains the difference between tractable and intractable problems, and introduces the Problems that are P, NP and NP complete.

Course Outcomes:

- 1. Ability to analyze the performance of algorithms
- 2. Ability to choose appropriate data structures and algorithm design methods for a specified application
- 3. Ability to understand how the choice of data structures and the algorithm design methodsImpact the performance of programs

UNIT- I

Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT-II

Disjoint Sets: Disjoint set operations, union and find algorithms, Priority Queue-Heaps, Heapsort Backtracking: General method, applications, n-queen's problem, sum of subsets problem, graph Coloring, Hamiltonian cycles.

UNIT - III

Dynamic Programming: General method, applications- Optimal binary search tree, 0/1 knapsack problem, All pairs shortest path problem, Traveling salesperson problem, Reliability design.

UNIT-IV

Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem. Basic Traversal and Search Techniques: Techniques for Binary Trees, Techniques for Graphs, Connected components, Biconnected components.

UNIT-V

Branch and Bound: General method, applications - Traveling salesperson problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP-Hard and NP-Complete classes, Cook's theorem.

TEXT BOOK:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University press, 1998.

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- 2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons.

MACHINE LEARNING

B.Tech. III Year I Sem.

LTPC

3 0 0 3

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Python Programming".

Course Objectives:

- 1. To introduce students to the basic concepts and techniques of Machine Learning.
- 2. To have a thorough understanding of the Supervised and Unsupervised learning techniques
- 3. To study the various probability-based learning techniques

Course Outcomes:

- 1. Distinguish between, supervised, unsupervised and semi-supervised learning
- 2. Understand algorithms for building classifiers applied on datasets of non-linearly separableclasses
- 3. Understand the principles of evolutionary computing algorithms
- 4. Design an ensembler to increase the classification accuracy

UNIT - I

Learning, Types of Machine Learning, Supervised Learning, supervised, unsupervised, semi-supervised, Reinforcement Learning, Batch and Online Learning, Main Challenges of Machine Learning

UNIT - II

Regression: Introduction to Regression analysis, measure of linear relationship, Regression with stats models, determining coefficient, meaning and significance of coefficients, coefficient calculation with least square method, Types of regression, Simple Linear Regression, Using Multiple features, Polynomial Regression, Metrics for Regression: MSE, RMSE, MAE.

UNIT - III

Learning with Trees, Decision Trees, Constructing Decision Trees, Classification and Regression Trees, Ensemble Learning, Boosting, Bagging, Different ways to Combine Classifiers, Basic Statistics, Gaussian Mixture Models, Nearest Neighbor Methods, Unsupervised Learning, K means Algorithms

UNIT - IV

Classification: Classification problem, Probability based approach, Logistic Regression- log-odd, sigmoid transformation, Metrics: Confusion Matrix, Accuracy, Error Rate, Precision, Recall, ROC curve, F1 score, and introduction to gradient descent.

Evolutionary Learning, Genetic algorithms, Genetic Offspring: - Genetic Operators, Using Genetic Algorithms

UNIT - V

Non-Parametric& SVM classification: About Non parametric classification, Decision Trees: Entropy, gain ratio, Information Gain, Splitting criteria,

Ensemble Method: Introduction to Random Forest, Accuracy measure & performance Instance based learning- Introduction, KNN algorithm, Distance measures, model building, locally weighted regression, radial basis functions, SVM classifier, hyper-plane, slack variables, geometric transformation kernel trick, kernel transformation.

TEXT BOOKS:

- 1. 1. Hands-On Machine Learning with Scikit-Learn and Tensor Flow -Aurélien Géron, O'Reilly Media, 2017.
- 2. Practical Python Data Visualization: A Fast Track Approach to Learning Data Visualization with Python, Ashwin Pajankar, A Press.
- Python: End-to-end Data Analysis Phuong Vo.T.H, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz FelipeMartins, Packet Pub.

- 1. Tom M Mitchell, —Machine Learning, First Edition, McGraw Hill Education, 2013.
- 2. Peter Flach, —Machine Learning: The Art and Science of Algorithms that Make Sense of Datall, First Edition, Cambridge University Press, 2012.
- Jason Bell, —Machine learning, Hands on for Developers and Technical ProfessionalsII, FirstEdition, Wiley, 2014
- 4. Ethem Alpaydin, —Introduction to Machine Learning 3e (Adaptive Computation and MachineLearning Series), Third Edition, MIT Press, 2014

COMPUTER NETWORKS

B.Tech. III Year I Sem.

LTPC

3 0 0 3

Prerequisites

1. A course on "Programming for problem solving".

Course Objectives

- The objective of the course is to equip the students with a general overview of the conceptsand fundamentals of computer networks.
- 2. Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers.

Course Outcomes

- 1. Gain the knowledge of the basic computer network technology.
- 2. Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model.
- 3. Obtain the skills of subnetting and routing mechanisms.
- 4. Familiarity with the essential protocols of computer networks, and how they can be applied innetwork design and implementation.

UNIT- I

Network hardware, Network software, OSI, TCP /IP Reference models, Example Networks: ARPANET, Internet. Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless Transmission. Data link layer: Design issues, framing, Error detection and correction.

UNIT - II

Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel.

Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go Back-N, A protocol using Selective Repeat, Example data link protocols.

Medium Access sublayer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

UNIT - III

Network Layer: Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

UNIT-IV

Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

UUNIT-V

Application Layer -Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video. **TEXT BOOK:**

1. Computer Networks -- Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. PearsonEducation/PHI

- 1. An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education.
- 2. Data Communications and Networking, Behrouz A. Forouzan. Third Edition TMH.

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA & ISO 9001:2015 Certified

DEPARTMENT OF CSE (AI&ML)

BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

B.Tech. III Year I Sem.

LTPC

3 0 0 3

Prerequisites: None

Course Objective: To learn the basic Business types, impact of the Economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricingaspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

UNIT - I

Introduction to Business and Economics:

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply in Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT - II

Demand and Supply Analysis:

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making. Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting. **Supply Analysis:** Determinants of Supply, Supply Function & Law of Supply.

UNIT - III

Production, Cost, Market Structures & Pricing:

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition.

Pricing: Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT-IV

Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts (simple problems).

UNIT - V

Financial Analysis through Ratios: Concept of Ratio Analysis, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios (simple problems).

TEXT BOOKS:

- D.D. Chaturvedi, S.L. Gupta, Business Economics Theory and Applications, InternationalBook House Pvt. Ltd. 2013.
- 2. Dhanesh K Khatri, Financial Accounting, Tata McGraw Hill, 2011.
- Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata McGrawHill Education Pvt. Ltd. 2012.

- 1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
- 2. S.N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.

MACHINE LEARNING LAB

B.Tech. III Year I Sem.

LTPC

0 0 2 1

Prerequisites: None

Course Objective:

 The objective of this lab is to get an overview of the various machine learning techniques andcan demonstrate them using python.

Course Outcomes:

- · Understand modern notions in predictive data analysis
- · Select data, model selection, model complexity and identify the trends
- Understand a range of machine learning algorithms along with their strengths and weaknesses
- · Build predictive models from data and analyze their performance

List of Experiments

- Write a python program to compute Central Tendency Measures: Mean, Median, Mode Measure of Dispersion: Variance, Standard Deviation
- 2. Study of Python Basic Libraries such as Statistics, Math, Numpy and Scipy
- 3. Study of Python Libraries for ML application such as Pandas and Matplotlib
- 4. Write a Python program to implement Simple Linear Regression
- 5. Implementation of Multiple Linear Regression for House Price Prediction using sklearn
- 6. Implementation of Decision tree using sklearn and its parameter tuning
- 7. Implementation of KNN using sklearn
- 8. Implementation of Logistic Regression using sklearn
- 9. Implementation of K-Means Clustering
- 10. Performance analysis of Classification Algorithms on a specific dataset (Mini Project)

TEXT BOOK:

1. Machine Learning - Tom M. Mitchell, - MGH.

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis.

REFERENCES:

- Vijayvargia, Abhishek, Machine Learning with Python: An Approach to Applied Machine Learning, BPB Publications, 1st edition, 2018.
- 2. Aurelien Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, Oreilly, March 2017.
- 3. Dr. M Gopal, Applied Machine Learning, 1st Edition, McGraw-Hill, 2018

COMPUTER NETWORKS LAB

B.Tech. III Year I Sem.

LTPC

0 0 2 1

Course Objectives:

- 1. To understand the working principle of various communication protocols.
- To understand the network simulator environment and visualize a network topology andobserve its performance
- 3. To analyze the traffic flow and the contents of protocol frames

Course Outcomes:

- 1. Implement data link layer farming methods
- 2. Analyze error detection and error correction codes.
- 3. Implement and analyze routing and congestion issues in network design.
- 4. Implement Encoding and Decoding techniques used in presentation layer
- 5. To be able to work with different network tools

List of Experiments

- 1. Implement the data link layer framing methods such as character, character-stuffing and bitstuffing.
- 2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
- Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
- 4. Implement Dijsktra's algorithm to compute the shortest path through a network
- 5. Take an example subnet of hosts and obtain a broadcast tree for the subnet.
- 6. Implement distance vector routing algorithm for obtaining routing tables at each node.
- 7. Implement data encryption and data decryption
- 8. Write a program for congestion control using Leaky bucket algorithm.
- 9. Write a program for frame sorting techniques used in buffers.
- 10. Wireshark
 - i. Packet Capture Using Wire shark
 - ii. Starting Wire shark
 - iii. Viewing Captured Traffic
 - iv. Analysis and Statistics & Filters.
- 11. How to run Nmap scan
- 12. Operating System Detection using Nmap
- 13. Do the following using NS2 Simulator
 - i. NS2 Simulator-Introduction
 - ii. Simulate to Find the Number of Packets Dropped
 - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
 - iv. Simulate to Find the Number of Packets Dropped due to Congestion
 - v. Simulate to Compare Data Rate& Throughput.
 - vi. Simulate to Plot Congestion for Different Source/Destination
 - vii. Simulate to Determine the Performance with respect to Transmission of Packets

TEXT BOOK:

1. Computer Networks, Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. PearsonEducation/PHI

- 1. An Engineering Approach to Computer Networks, S.Keshav, 2nd Edition, Pearson Education
- 2. Data Communications and Networking Behrouz A, Forouzan. 3rd Edition, TMH.

ADVANCED ENGLISH COMMUNICATION SKILLS LAB

B.Tech. III Year I Sem.

LTPC

0 0 2 1

1. INTRODUCTION:

The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. Atthis stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- · Facing interviews.
- · Writing project/research reports/technical reports.
- · Making oral presentations.
- Writing formal letters.
- · Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. OBJECTIVES:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

- 1. Activities on Fundamentals of Inter-personal Communication and Building Vocabulary Starting a conversation responding appropriately and relevantly using the right body language
 - Role Play in different situations & Discourse Skills- using visuals Synonyms and antonyms, wordroots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
- 2. Activities on Reading Comprehension –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading& effectivegoogling.
- 3. Activities on Writing Skills Structure and presentation of different types of writing *letter writing/Resume writing/ e-correspondence/Technical report writing/* planning for writing improving one's writing.
- Activities on Presentation Skills Oral presentations (individual and group) through JAM sessions/seminars/<u>PPTs</u> and written presentations through posters/projects/reports/ e-mails/assignments etc.
- Activities on Group Discussion and Interview Skills Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening

strategies, answering strategies, interview through tele-conference & video-conference and MockInterviews.

4. MINIMUM REQUIREMENT:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- · Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed 2.8 GHZ
- T. V, a digital stereo & Camcorder
- · Headphones of High quality

5. SUGGESTED SOFTWARE:

The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

TEXT BOOKS:

- Effective Technical Communication by M Asharaf Rizvi. McGraw Hill Education (India) Pvt. Ltd.2nd Edition
- 2. Academic Writing: A Handbook for International Students by Stephen Bailey, Routledge, 5th Edition.

- Learn Correct English A Book of Grammar, Usage and Composition by Shiv K. Kumar and Hemalatha Nagarajan. Pearson 2007
- 2. Professional Communication by Aruna Koneru, McGraw Hill Education (India) Pvt. Ltd, 2016.
- 3. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press2009.
- 4. Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi.
- 5. English Vocabulary in Use series, Cambridge University Press 2008.
- Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning.
- 7. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009.
- 8. Job Hunting by Colm Downes, Cambridge University Press 2008.
- 9. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata McGraw-Hill 2009.

INTELLECTUAL PROPERTY RIGHTS

B.Tech. III Year I Sem.

LTPC

3 0 0 0

Prerequisites: None

UNIT - I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT - II

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT - III

Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT - IV

Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

UNIT - V

New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT & REFERENCE BOOKS:

- 1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
- Intellectual property right Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd.

LOGICAL REASONING - I

B.Tech. III Year I Sem.

LTPC

0 0 2 1

Quantitative Aptitude

- 1. Simple Interest: Definitions, Problems on interest and amount, Problems, when rate of interest and time period are numerically equal. Compound Interest: Definition and formula for amount in compound interest, Difference between simple interest and compound interest for 2 years on the same principle and time period.
- 2. Profit & Loss: Cost price, selling price, marked/list price, profit/gain, discount, use of false scale for selling an article, discount series and net selling price, successive Selling.
- 3. Percentages, Ratio & Proportions:
 - Calculating a percentage, calculating increase or decrease, calculating percent change, calculating successive percentages, definition of ratio and proportions, direct proportion, Inverse or reciprocal proportion, continued proportion, Mean proportion, Third proportion, Fourth proportion, compound ratio.
- Averages: Definition of Average, Rules of Average, Problems on Average, Problems on Weighted Average, Finding average using assumed mean method.
- Time and Distance: Relation between speed, distance and time, converting km/h into m/s and vice versa, Problems on average speed, Problems on relative speed, Problems on trains.
- Time and Work: Problems on Unitary method, Relation between Men, Days, Hours and Work, Problems on Man-Day-Hours method, Problems on alternate days, Problems on Pipes and Cisterns.

Logical Reasoning:

- Logical Connectives: Definition of simple statement, Definition of compound statement, finding the implications for compound statements, finding the negations for compound statements.
- 8. Syllogism: Definition of statement/premises and conclusion, explanation through Venn diagram, problems on two/three statements and one/two conclusions, identification of statements and conclusions from the given set of statements. Statements and Arguments: Types of arguments, Strong argument, weak argument, identifying strong/weak arguments from a given statement.
- Analogy Classifications: Definition of Analogy, Problems on number analogy, Problems on letter analogy, Problems on verbal analogy.
- Non Verbal Reasoning: Identification of continued figure or odd figure by using analogy, series, rotation in clockwise and rotation in anticlockwise, vertical, horizontal, alternative rotation, addition, subtraction.
- 11. Blood Relations: Blood relations on Family Tree concepts (relationships in the family), paternal side relations, maternal side relations, simple and direct relationships, relation puzzles, coded relations.
- Binary Logic: Definition of a truth-teller, Definition of a liar, Definition of an alternator, solving problems using method of assumptions, solving analytical puzzles using binary logic.

Text Books:

- 1. A Modern Approach to Logical reasoning, R S Agarwal, S .Chand publications, 2013.
- Quantitative Aptitude for Competitive examinations, Dinesh Khattar, Pearson Education 4th Editin, 2019.

Reference Books:

- 1. Quantitative Aptitude and Reasoning, R. V. Praveen, PHI Learning Private Ltd, 2nd Edition, 2013.
- 2. Quantitative Aptitude for competitive examinations, Abhijith Guha, McGraw Hill
- 3. Education, 6th Edition, 2017.
- 4. Analytical & Logical Reasoning, Peeyush Bhardwaj, Arihant Publications, 4th Edition, 2015.
- 5. Logical Reasoning for the CAT, Arun Sharma, McGraw Hill Education, 2nd Edition 2014.

Note:

- 1) This course is an Activity Based Non-Laboratory Course (NO LABORATORY REQUIRED).
- 2) This course is an Activity Based Non-Laboratory Course (NO LABORATORY REQUIRED).

SKILL DEVELOPMENT COURSE (UI DESIGN-FLUTTER)

B.Tech, III Year I Sem.

Course Objectives:

- Learns to Implement Flutter Widgets and Layouts
- Understands Responsive UI Design and with Navigation in Flutter
- Knowledge on Widges and customize widgets for specific UI elements, Themes
- Understand to include animation apart from fetching data

Course Outcomes:

- Implements Flutter Widgets and Layouts
- Responsive UI Design and with Navigation in Flutter
- Create custom widgets for specific UI elements and also Apply styling using themes and custom
- Design a form with various input fields, along with validation and error handling
- Fetches data and write code for unit Test for UI components and also animation

List of Experiments: Students need to implement the following experiments

- 1. a) Install Flutter and Dart SDK.
 - b) Write a simple Dart program to understand the language basics.
- 2. a) Explore various Flutter widgets (Text, Image, Container, etc.).
 - b) Implement different layout structures using Row, Column, and Stack widgets.
- 3. a) Design a responsive UI that adapts to different screen sizes.
 - b) Implement media queries and breakpoints for responsiveness.
- 4. a) Set up navigation between different screens using Navigator.
 - b) Implement navigation with named routes.
- 5. a) Learn about stateful and stateless widgets.
 - b) Implement state management using set State and Provider.
- 6. a) Create custom widgets for specific UI elements.
 - b) Apply styling using themes and custom styles.
- 7. a) Design a form with various input fields.
 - b) Implement form validation and error handling.
- b) Implement form validation and error handling.a) Add animations to UI elements using Flutter's animation framework.
 - b) Experiment with different types of animations (fade, slide, etc.).
- 9. a) Fetch data from a REST API.
 - b) Display the fetched data in a meaningful way in the UI.
- 10.a) Write unit tests for UI components.
 - b) Use Flutter's debugging tools to identify and fix issues.

TEXT BOOK:

1. Marco L. Napoli, Beginning Flutter: A Hands-on Guide to App Development, 1st edition, Wrox publisher.

DEEP LEARNING

B.Tech. III Year II Sem.

LTPC

3 0 0 3

Prerequisites:

- 1. linear equations, graphs of functions, histograms, and statistical means
- 2. Programming in Python

Course Objectives: students will be able

- 1. To understand complexity of Deep Learning algorithms and their limitations
- 2. To be capable of performing experiments in Deep Learning using real-world data.

Course Outcomes:

- 1. Implement deep learning algorithms, understand neural networks and traverse the layers ofdata
- Learn topics such as convolutional neural networks, recurrent neural networks, training deepnetworks and high-level interfaces
- 3. Understand applications of Deep Learning to Computer Vision
- 4. Understand and analyze Applications of Deep Learning to NLP

UNIT - I

Introduction: Feed forward Neural networks, Gradient descent and the back propagation algorithm, Unit saturation, the vanishing gradient problem, and ways to mitigate it. RelU Heuristics for avoiding bad local minima, Heuristics for faster training, Nestors accelerated gradient descent, Regularization, Dropout

UNIT - II

Convolutional Neural Networks: Architectures, convolution/pooling layers, Recurrent Neural Networks: LSTM, GRU, Encoder Decoder architectures. Deep Unsupervised Learning: Auto encoders, Variational Auto-encoders, Adversarial Generative Networks, Auto-encoder and DBM Attention and memory models, Dynamic Memory Models

UNIT - III

Applications of Deep Learning to Computer Vision: Image segmentation, object detection, automatic image captioning, Image generation with Generative adversarial networks, video to text with LSTM models, Attention Models for computer vision tasks

UNIT - IV

Applications of Deep Learning to NLP: Introduction to NLP and Vector Space Model of Semantics, Word Vector Representations: Continuous Skip-Gram Model, Continuous Bag-of-Wordsmodel (CBOW), Glove, Evaluations and Applications in word similarity

UNIT - V

Analogy reasoning: Named Entity Recognition, Opinion Mining using Recurrent Neural Networks: Parsing and Sentiment Analysis using Recursive Neural Networks: Sentence Classification using Convolutional Neural Networks, Dialogue Generation with LSTMs

TEXT BOOKS:

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.
- 3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCES:

- 1. Bishop, C, M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

DATA ANALYTICS

III Year B.Tech II-Sem

LTPC

3 1 0 4

Prerequisites

- A course on "Database Management Systems".
- 2. Knowledge of probability and statistics.

Course Objectives:

- To explore the fundamental concepts of data analytics.
- · To learn the principles and methods of statistical analysis
- Discover interesting patterns, analyze supervised and unsupervised models and estimate the accuracy of the algorithms.
- To understand the various search methods and visualization techniques.

Course Outcomes: After completion of this course students will be able to

- Understand the impact of data analytics for business decisions and strategy
- Carry out data analysis/statistical analysis
- To carry out standard data visualization and formal inference procedures
- Design Data Architecture
- Understand various Data Sources

UNIT - I

Data Management: Design Data Architecture and manage the data for analysis, understand various sources of Data like Sensors/Signals/GPS etc. Data Management, Data Quality (noise, outliers, missing values, duplicate data) and Data Processing & Processing.

UNIT - II

Data Analytics: Introduction to Analytics, Introduction to Tools and Environment, Application of Modeling in Business, Databases & Types of Data and variables, Data Modeling Techniques, Missing Imputations etc. Need for Business Modeling.

UNIT - III

Regression - Concepts, Blue property assumptions, Least Square Estimation, Variable Rationalization, and Model Building etc.

Logistic Regression: Model Theory, Model fit Statistics, Model Construction, Analytics applications to various Business Domains etc.

UNIT - IV

Object Segmentation: Regression Vs Segmentation – Supervised and Unsupervised Learning, Tree Building – Regression, Classification, Overfitting, Pruning and Complexity, Multiple Decision Trees etc. Time Series Methods: Arima, Measures of Forecast Accuracy, STL approach, Extract features from generated model as Height, Average Energy etc and Analyze for prediction

UNIT - V

Data Visualization: Pixel-Oriented Visualization Techniques, Geometric Projection Visualization Techniques, Icon-Based Visualization Techniques, Hierarchical Visualization Techniques, Visualization Complex Data and Relations.

TEXT BOOKS:

1. Student's Handbook for Associate Analytics - II, III.

2. Data Mining Concepts and Techniques, Han, Kamber, 3rd Edition, Morgan KaufmannPublishers.

- 1. Introduction to Data Mining, Tan, Steinbach and Kumar, Addision Wisley, 2006.
- 2. Data Mining Analysis and Concepts, M. Zaki and W. Meira Mining of Massive Datasets, Jure Leskovec Stanford Univ. Anand Rajaraman Milliway LabsJeffrey D Ullman Stanford Univ.

NATURAL LANGUAGE PROCESSING

B.Tech. III Year II Sem.

LTPC

3 0 0 3

Prerequisites: Data structures, finite automata and probability theory

Course Objectives:

Introduce to some of the problems and solutions of NLP and their relation to linguistics and statistics.

Course Outcomes:

- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Understand and carry out proper experimental methodology for training and evaluatingempirical NLP systems
- Able to manipulate probabilities, construct statistical models over strings and trees, andestimate parameters using supervised and unsupervised training methods.
- · Able to design, implement, and analyze NLP algorithms
- Able to design different language modeling Techniques.

UNIT - I

Finding the Structure of Words: Words and Their Components, Issues and Challenges, Morphological Models

Finding the Structure of Documents: Introduction, Methods, Complexity of the Approaches, Performances of the Approaches

UNIT - II

Syntax Analysis: Parsing Natural Language, Treebanks: A Data-Driven Approach to Syntax, Representation of Syntactic Structure, Parsing Algorithms, Models for Ambiguity Resolution in Parsing, Multilingual Issues

UNIT - III

Semantic Parsing: Introduction, Semantic Interpretation, System Paradigms, Word SenseSystems, Software.

UNIT - IV

Predicate-Argument Structure, Meaning Representation Systems, Software.

UNIT - V

Discourse Processing: Cohension, Reference Resolution, Discourse Cohension and Structure **Language Modeling:** Introduction, N-Gram Models, Language Model Evaluation, ParameterEstimation, Language Model Adaptation, Types of Language Models, Language-Specific ModelingProblems, Multilingual and Crosslingual Language Modeling

TEXT BOOKS:

- Multilingual natural Language Processing Applications: From Theory to Practice Daniel M. Bikel and Imed Zitouni, Pearson Publication
- 2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary

REFERENCE BOOK:

1. Speech and Natural Language Processing - Daniel Jurafsky & James H Martin, PearsonPublications

NATURAL LANGUAGE PROCESSING LAB/ FULL STACKDEVELOPMENT LAB

B.Tech. III Year II Sem.

LTPC

0 0 3 1

Prerequisites:

- 1. Data structures, finite automata and probability theory
- 2. Object Oriented Programming
- 3. Web Technologies

Course Objectives:

- 1. To Develop and explore the problems and solutions of NLP.
- Introduce fast, efficient, interactive and scalable web applications using run time environmentprovided by the full stack components.

Course Outcomes:

- 1. Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- 2. Knowledge on NLTK Library implementation.
- Work on strings and trees, and estimate parameters using supervised and unsupervisedtraining methods.
- 4. Design flexible and responsive Web applications using Node JS, React, Express and Angular.
- 5. Perform CRUD operations with MongoDB on huge amount of data.
- 6. Develop real time applications using react components.
- 7. Use various full stack modules to handle http requests and responses

List of Experiments

NLP: Implement the following using Python

- 1. Write a Python Program to perform following tasks on text
 - a) Tokenization
- b) Stop word Removal
- 2. Write a Python program to implement Porter stemmer algorithm for stemming
- 3. Write Python Program for a) Word Analysis
- b) Word Generation
- Create a Sample list for at least 5 words with ambiguous sense and Write a Python programto implement WSD
- 5. Install NLTK tool kit and perform stemming
- 6. Create Sample list of at least 10 words POS tagging and find the POS for any given word
- 7. Write a Python program to
 - a) Perform Morphological Analysis using NLTK library
 - b) Generate n-grams using NLTK N-Grams library
 - c) Implement N-Grams Smoothing
- 8. Using NLTK package to convert audio file to text and text file to audio files.

Full Stack Development

- 1. Create an application to setup node JS environment and display "Hello World".
- 2. Create a Node JS application for user login system.
- 3. Write a Node JS program to perform read, write and other operations on a file.
- 4. Write a Node JS program to read form data from query string and generate response usingNodeJS
- Create a food delivery website where users can order food from a particular restaurant listed in the website for handling http requests and responses using NodeJS.
- 6. Implement a program with basic commands on databases and collections using MongoDB.
- 7. Implement CRUD operations on the given dataset using MongoDB.

- 8. Perform Count, Limit, Sort, and Skip operations on the given collections using MongoDB.
- 9. Develop an angular JS form to apply CSS and Events.
- 10. Develop a Job Registration form and validate it using angular JS.
- Write an angular JS application to access JSON file data of an employee from a server using \$http service.
- 12. Develop a web application to manage student information using Express and Angular JS.
- 13. Write a program to create a simple calculator Application using React JS.
- 14. Write a program to create a voting application using React JS
- 15. Develop a leave management system for an organization where users can apply different types of leaves such as casual leave and medical leave. They also can view the available number ofdays using react application.
- 16. Build a music store application using react components and provide routing among the web pages.
- 17. Create a react application for an online store which consist of registration, login, product information pages and implement routing to navigate through these pages.

TEXT BOOKS:

- Multilingual natural Language Processing Applications: From Theory to Practice Daniel M.Bikel and Imed Zitouni, Pearson Publication.
- Oreilly Practical natural Language Processing, A Comprehensive Guide to Building Real WorldNLP Systems.
- Daniel Jurafsky, James H. Martin—Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014.
- Brad Dayley, Brendan Dayley, Caleb Dayley., Node.js, MongoDB and Angular Web Development, 2nd Edition, Addison-Wesley, 2019.
- 5. Mark Tielens Thomas., React in Action, 1st Edition, Manning Publications.

- Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python, FirstEdition, O'Reilly Media, 2009.
- Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, Apress, 2019.
- Chris Northwood, The Full Stack Developer: Your Essential Guide to the Everyday SkillsExpected of a Modern Full Stack Web Developer', 1st edition, Apress, 2018.
- 4. Brad Green& Seshadri. Angular JS. 1st Edition. O'Reilly Media, 2013.
- 5. Kirupa Chinnathambi, Learning React: A Hands-On Guide to Building Web Applications UsingReact and Redux, 2nd edition, Addison-Wesley Professional, 2018.

DEEP LEARNING LAB

B.Tech. III Year II Sem

LTPC

Course Objectives:

- 1. To Build The Foundation Of Deep Learning.
- 2. To Understand How To Build The Neural Network.
- 3. To enable students to develop successful machine learning concepts.

Course Outcomes:

- 1. Upon the Successful Completion of the Course, the Students would be able to:
- 2. Learn The Fundamental Principles Of Deep Learning.
- 3. Identify The Deep Learning Algorithms For Various Types of Learning Tasks in variousdomains.
- 4. Implement Deep Learning Algorithms And Solve Real-world problems.

LIST OF EXPERIMENTS:

- 1. Build a deep neural network model using linear regression using a single variable. (User defined functions)
- 2. Build a deep neural network model using linear regression using multiple variables.
- 3. Write a program to convert speech into text.
- 4. Write a program to convert text into speech.
- 5. Write a program to convert video into frames.
- 6. Write a program for Time-Series Forecasting with the LSTM Model.
- 7. Build a feed forward neural network for prediction of logic gates.
- 8. Write a program to implement deep learning Techniques for image segmentation.
- 9. Write a program for object detection using image labeling tools.
- 10. Write a program to predict a caption for a sample image using LSTM.
- 11. Write a program for character recognition using CNN.
- 12. Write a program to predict a caption for a sample image using CNN.
- 13. Write a program for character recognition using RNN and compare it with CNN.
- 14. Write a program to detect Dog image using YOLO Algorithm.
- 15. Write a program to develop Autoencoders using MNIST Handwritten Digits.
- 16. Write a program to develop a GAN for Generating MNIST Handwritten Digits.

TEXT BOOKS:

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.
- 3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCES:

- 1. Bishop, C, M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G.H., and Van Loan C.F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

Extensive Reading:

- http://www.deeplearning.net
- https://www.deeplearningbook.org/
- https://developers.google.com/machine-learning/crash-course/ml-intro
- www.cs.toronto.edu/~fritz/absps/imagenet.pdf

LOGICAL REASONING - II

B.Tech, III Year II Sem

LTPC

0 0 2 1

Quantitative Aptitude

- 1. **Permutation and Combinations:** Fundamental Principle of Counting, Counting Methods, Definition of permutation, Linear Permutations, Rank of a word, Circular Permutations, Definition of Combinations, Problems on Combinations.
- 2. **Probability:** Definitions of Probability, Addition and Multiplication theorem. Deductions: Introduction, expressing different types of statements using Venn diagrams, Definition of complimentary pairs, finding the conclusions using Venn diagrams for two and more statements.
- Number system: Classification of numbers, Divisibility rules, Finding the units digit, Finding remainders in divisions involving higher powers, LCM and HCF Models, Decimal fractions, Simplifications, Square Roots & Cube Roots, Surds and Indices.
- 4. Allegation and Mixture: Definition of allegation, mean price, rules of allegation on quantity and cost price, diagrammatic explanation, removal and replacement.

Logical Reasoning:

- 5. Sitting Arrangement: Problems on Linear arrangement, Problems on Circular arrangement, Problems on Double line-up, Problems on Selections, problems on Comparisons. Coding and decoding: Coding using same set of letters, Coding using different set of letters, Coding into a number Comparison & Elimination.
- Number and letter Series: Difference series, Product series, Squares series, Cubes series, Alternate series, Combination series, miscellaneous series, Place values of letters.
- Day sequence/Calendars: Definition of a Leap Year, Finding the number of Odd days, framing the year code for centuries, finding the day of any random calendar date.
- 8. Alphabet Test: Alphabetical order of verbs, letter-word problems, rule-detection, alphabetical quibble, word formation.
- Direction sense Test: Direction from the initial point: directions cardinal directions, problems on distances, problems on clocks, problems on angles, problems on shadows
- 10. Clocks: Finding the angle when the time is given, Finding the time when the angle is known, Relation between Angle, Minutes and Hours, Exceptional cases in clocks.

- 11. Cubes: Basics of a cube, finding the minimum number of cuts when the number of identical pieces are given, Finding the maximum number of pieces when cuts are given, Problems on painted cubes of same and different colours, Problems on cuboids, Problems on painted cuboids, Problems on Dice.
- 12. Data Sufficiency: Different models in Data Sufficiency, Problems on Data sufficiency, Problems on data redundancy. Data Interpretation: Problems on tabular form, Problems on Line Graphs, Problems on Bar Graphs, Problems on Pie Charts.

Text Books:

- 1. A modern approach to Logical reasoning, R S Agarwal, S. Chand Publications, 2013.
- 2. Quantitative Aptitude for Competitive Examinations, Dinesh Khattar. Pearson Education, 4 th Edition, 2019. REFERENCE BOOKS:
- 1. Quantitative Aptitude and Reasoning, R. V. Praveen, PHI Learning Private Ltd, 2nd Edition, 2013.
- 2. Quantitative Aptitude for competitive examinations, Abhijith Guha, McGraw Hill Education, 6th Edition, 2017.
- 3. Analytical & Logical Reasoning, Peeyush Bhardwaj, Arihant Publications, 4th Edition, 2015. 4. Logical Reasoning for the CAT, Arun Sharma, McGraw Hill Education, 2nd Edition 2014.
- 4. A Modern Approach to Logical reasoning, R S Agarwal, S .Chand publications, 2013.
- 5. Quantitative Aptitude for Competitive examinations, Dinesh Khattar, Pearson Education 4th Editin, 2019.

DATA ANALYTICS LAB

B.Tech. III Year II Sem.

LTPC

0021

Course Objectives:

- To explore the fundamental concepts of data analytics.
- · To learn the principles and methods of statistical analysis
- Discover interesting patterns, analyze supervised and unsupervised models and estimate theaccuracy
 of the algorithms.
- To understand the various search methods and visualization techniques.

Course Outcomes:

- Understand linear regression and logistic regression
- · Understand the functionality of different classifiers
- · Implement visualization techniques using different graphs
- · Apply descriptive and predictive analytics for different types of data

List of Experiments:

- 1. Data Preprocessing
 - a. Handling missing values
 - b. Noise detection removal
 - c. Identifying data redundancy and elimination
- 2. Implement any one imputation model
- 3. Implement Linear Regression
- 4. Implement Logistic Regression
- 5. Implement Decision Tree Induction for classification
- 6. Implement Random Forest Classifier
- 7. Implement ARIMA on Time Series data
- 8. Object segmentation using hierarchical based methods
- 9. Perform Visualization techniques (types of maps Bar, Colum, Line, Scatter, 3D Cubes etc)
- 10. Perform Descriptive analytics on healthcare data
- 11. Perform Predictive analytics on Product Sales data
- 12. Apply Predictive analytics for Weather forecasting.

TEXT BOOKS:

- Student's Handbook for Associate Analytics II, III.
- Data Mining Concepts and Techniques, Han, Kamber, 3rd Edition, Morgan Kaufmann Publishers.

- 1. Introduction to Data Mining, Tan, Steinbach and Kumar, Addison Wesley, 2006.
- 2. Data Mining Analysis and Concepts, M. Zaki and W. Meira
- Mining of Massive Datasets, Jure Leskovec Stanford Univ. Anand Rajaraman Milliway LabsJeffrey D Ullman Stanford Univ.

ENVIRONMENTAL SCIENCE

B.Tech. III Year II Sem.

LTPC

3 0 0 0

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- · Understanding the environmental policies and regulations

Course Outcomes:

 Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II

Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT - III

Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situconservation. National Biodiversity act.

UNIT-IV

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management. Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. Global Environmental Issues and Global Efforts: Climate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-Gol Initiatives.

UNIT - V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules. EIA: EIA

structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio-economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future**: Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

- Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.
- 6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.

GRAPH THEORY (Professional Elective - I)

B.Tech. III Year I Sem.

LTPC

3 0 0 3

Course Objectives:

Understanding graphs, trees, connected paths, applications of trees and graphs.

Course Outcomes:

- · Know some important classes of graph theoretic problems;
- · Prove central theorems about trees, matching, connectivity, coloring and planar graphs;
- Describe and apply some basic algorithms for graphs;
- Use graph theory as a modeling tool.

UNIT - I

Introduction-Discovery of graphs, Definitions, Subgraphs, Isomorphic graphs, Matrix representations of graphs, Degree of a vertex, Directed walks, paths and cycles, Connectivity in digraphs, Eulerian and Hamilton digraphs, Eulerian digraphs, Hamilton digraphs, Special graphs, Complements, Larger graphs from smaller graphs, Union, Sum, Cartesian Product, Composition, Graphic sequences, Graph theoretic model of the LAN problem, Havel-Hakimi criterion, Realization of a graphic sequence.

UNIT-II

Connected graphs and shortest paths - Walks, trails, paths, cycles, Connected graphs, Distance, Cut-vertices and cut-edges, Blocks, Connectivity, Weighted graphs and shortest paths, Weighted graphs, Dijkstra"s shortest path algorithm, Floyd-Warshall shortest path algorithm.

UNIT - III

Trees- Definitions and characterizations, Number of trees, Cayley"s formula, Kircho

-matrix-tree theorem, Minimum spanning trees, Kruskal"s algorithm, Prim"s algorithm, Special classes of graphs, Bipartite Graphs, Line Graphs, Chordal Graphs, Eulerian Graphs, Fleury"s algorithm, Chinese Postman problem, Hamilton Graphs, Introduction, Necessary conditions and sufficient conditions.

UNIT - IV

Independent sets coverings and matchings— Introduction, Independent sets and coverings: basic equations, Matchings in bipartite graphs, Hall's Theorem, K"onig"s Theorem, Perfect matchings in graphs, Greedy and approximation algorithms.

UNIT - V

Vertex Colorings- Basic definitions, Cliques and chromatic number, Mycielski"s theorem, Greedy coloring algorithm, Coloring of chordal graphs, Brooks theorem, Edge Colorings, Introduction and Basics, Gupta-Vizing theorem, Class-1 and Class-2 graphs, Edge-coloring of bipartite graphs, Class-2 graphs, Hajos union and Class-2 graphs, A scheduling problem and equitable edge-coloring.

TEXT BOOKS:

- J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics. Springer, 1st edition, 2008.
- 2. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.

- 1. Lecture Videos: http://nptel.ac.in/courses/111106050/13
- 2. Introduction to Graph Theory, Douglas B. West, Pearson.

INTRODUCTION TO DATA SCIENCE (Professional Elective - I)

B.Tech. III Year I Sem.

LTPC

3 0 0 3

Course Objectives:

- Learn concepts, techniques and tools they need to deal with various facets of data science practice, including data collection and integration
- Understand the basic types of data and basic statistics
- · Identify the importance of data reduction and data visualization techniques

Course Outcomes:

- · Understand basic terms of statistical modeling and data science
- Implementation of R programming concepts
- · utilize R elements for data visualization and prediction

UNIT-I

Introduction

Definition of Data Science- Big Data and Data Science hype – and getting past the hype - Datafication - Current landscape of perspectives - Statistical Inference - Populations and samples - Statisticalmodeling, probability distributions, fitting a model – Over fitting.

Basics of R: Introduction, R-Environment Setup, Programming with R, Basic Data Types.

UNIT- II Data Types & Statistical Description

Types of Data: Attributes and Measurement, Attribute, The Type of an Attribute, The Different Types of Attributes, Describing Attributes by the Number of Values, Asymmetric Attributes, Binary Attribute, Nominal Attributes, Ordinal Attributes, Numeric Attributes, Discrete versus Continuous Attributes. Basic Statistical Descriptions of Data: Measuring the Central Tendency: Mean, Median, and Mode, Measuring the Dispersion of Data: Range, Quartiles, Variance, Standard Deviation, and Interquartile Range, Graphic Displays of Basic Statistical Descriptions of Data.

UNIT-III

Vectors: Creating and Naming Vectors, Vector Arithmetic, Vector sub setting,

Matrices: Creating and Naming Matrices, Matrix Sub setting, Arrays, Class.

Factors and Data Frames: Introduction to Factors: Factor Levels, Summarizing a Factor, Ordered Factors, Comparing Ordered Factors, Introduction to Data Frame, subsetting of Data Frames, Extending Data Frames, Sorting Data Frames.

Lists: Introduction, creating a List: Creating a Named List, Accessing List Elements, Manipulating List Elements, Merging Lists, Converting Lists to Vectors

UNIT-IV

Conditionals and Control Flow: Relational Operators, Relational Operators and Vectors, Logical Operators, Logical Operators and Vectors, Conditional Statements. **Iterative Programming in R:** Introduction, While Loop, For Loop, Looping Over List.

Functions in R: Introduction, writing a Function in R, Nested Functions, Function Scoping, Recursion, Loading an R Package, Mathematical Functions in R.

Charts and Graphs: Introduction, Pie Chart: Chart Legend, Bar Chart, Box Plot, Histogram, Line

Graph: Multiple Lines in Line Graph, Scatter Plot.

Regression: Linear Regression Analysis, Multiple Linear regression

TEXT BOOKS:

- Doing Data Science, Straight Talk from The Frontline. Cathy O'Neil and Rachel Schutt, O'Reilly,2014.
- 2. K G Srinivas, G M Siddesh, "Statistical programming in R", Oxford Publications.

- Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques, 3rd ed. The Morgan Kaufmann Series in Data Management Systems.
- Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, Pearson Education.
- 3. Brain S. Everitt, "A Handbook of Statistical Analysis Using R", Second Edition, 4 LLC, 2014.
- 4. Dalgaard, Peter, "Introductory statistics with R", Springer Science & Business Media, 2008.
- 5. Paul Teetor, "R Cookbook", O'Reilly, 2011.

WEB PROGRAMMING (Professional Elective - I)

B.Tech. III Year I Sem.

LTPC

3 0 0 3

Course Objectives:

- Understand the technologies used in Web Programming.
- · Know the importance of object-oriented aspects of Scripting.
- Understand creating database connectivity using JDBC.
- · Learn the concepts of web-based application using sockets.

Course Outcomes:

- · Design web pages.
- · Use technologies of Web Programming.
- · Apply object-oriented aspects to Scripting.
- · Create databases with connectivity using JDBC.
- Build web-based application using sockets.

UNIT - I Client side Programming

HTML- Basic Tags- List, Tables, Images, Forms, Frames, CSS

JAVA Script -

Web page Designing using HTML, Scripting basics- Client side and server side scripting. Java ScriptObject, names, literals, operators and expressions- statements and features- events - windows - documents - frames - data types - built-in functions- Browser object model - Verifying forms.-HTML5-CSS3- HTML 5 canvas - Web site creation using tools.

UNIT - II JAVA

Introduction to object-oriented programming-Features of Java – Data types, variables and arrays – Operators – Control statements – Classes and Methods – Inheritance. Packages and Interfaces – Exception Handling – Multithreaded Programming – Input/Output – Files – Utility Classes – String Handling.

UNIT - III JDBC

JDBC Overview – JDBC implementation – Connection class – Statements - Catching Database Results, handling database Queries. Networking– InetAddress class – URL class- TCP sockets – UDP sockets, Java Beans –RMI.

UNIT - IV APPLETS

Java applets- Life cycle of an applet – Adding images to an applet – Adding sound to an applet. Passing parameters to an applet. Event Handling. Introducing AWT: Working with Windows Graphics and Text. Using AWT Controls, Layout Managers and Menus. Servlet – life cycle of a servlet. The Servlet API, Handling HTTP Request and Response, using Cookies, Session Tracking. Introduction to JSP.

UNIT - V XML AND WEB SERVICES

Xml – Introduction-Form Navigation-XML Documents- XSL – XSLT- Web services-UDDI-WSDL-Java web services – Web resources,

TEXT BOOKS:

1. Harvey Deitel, Abbey Deitel, Internet and World Wide Web: How To Program 5th Edition.

- 2. Herbert Schildt, Java The Complete Reference, 7th Edition. Tata McGraw- Hill Edition.
- 3. Michael Morrison XML Unleashed Tech media SAMS.

- 1. John Pollock, Javascript A Beginners Guide, 3rd Edition Tata McGraw-Hill Edition.
- 2. Keyur Shah, Gateway to Java Programmer Sun Certification, Tata McGraw Hill, 2002.

IMAGE PROCESSING (Professional Elective - I)

B.Tech. III Year I Sem.

LTPC

3 0 0 3

Prerequisites

- Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of digital signal processing is desirable.
- 2. A course on "Computational Mathematics"
- 3. A course on "Computer Oriented Statistical Methods"

Course Objectives

- Provide a theoretical and mathematical foundation of fundamental Digital Image Processing concepts.
- The topics include image acquisition; sampling and quantization; preprocessing; enhancement; restoration; segmentation; and compression.

Course Outcomes

- Demonstrate the knowledge of the basic concepts of two-dimensional signal acquisition, sampling, and quantization.
- Demonstrate the knowledge of filtering techniques.
- Demonstrate the knowledge of 2D transformation techniques.
- Demonstrate the knowledge of image enhancement, segmentation, restoration and compression techniques.

UNIT - I

Digital Image Fundamentals: Digital Image through Scanner, Digital Camera. Concept of Gray Levels. Gray Level to Binary Image Conversion. Sampling and Quantization. Relationship between Pixels. Imaging Geometry. 2D Transformations-DFT, DCT, KLT and SVD.

UNIT - II

Image Enhancement in Spatial Domain Point Processing, Histogram Processing, Spatial Filtering, Enhancement in Frequency Domain, Image Smoothing, Image Sharpening.

UNIT - III

Image Restoration Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

UNIT-IV

Image Segmentation Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation.

UNIT - V

Image Compression Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Source Encoder and Decoder, Error Free Compression, Lossy Compression.

TEXT BOOK:

 Digital Image Processing: R.C. Gonzalez & R. E. Woods, Addison Wesley/ Pearson Education, 2nd Ed, 2004.

REFERENCE BOOKS:

1. Fundamentals of Digital Image Processing: A. K. Jain, PHI.

- 2. Digital Image Processing using MAT LAB: Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins: Pearson Education India, 2004.
- 3. Digital Image Processing: William K. Pratt, John Wiley, 3rd Edition, 2004.

Approved by AICTE, Affiliated to JNTUH Accredited by NAAC-A Grade, NBA & ISO 9001:2015 Certified

DEPARTMENT OF CSE (AI&ML)

SOFT COMPUTING (Professional Elective - I)

B.Tech. III Year I Sem.

LTPC 3003

Prerequisites:

1. Fundamental Mathematics.

Course Objectives:

- To learn various types of soft computing techniques and their applications.
- To acquire the knowledge of neural network architectures, learning methods and algorithms.
- To understand Fuzzy logic, Genetic algorithms and their applications.

Course Outcomes:

- Understand theoretical and practical aspects of distributed database systems.
- Understand various soft computing techniques.
- Understand various learning models and Neural Network Architectures.
- Understand approximate reasoning using fuzzy logic.
- · Analyse and design Genetic algorithms in different applications.
- Apply soft computing techniques to solve different applications.

UNIT - I

Soft computing vs. Hard computing, Various types of soft computing techniques. Artificial Neural Networks: Fundamental concepts, Evolution of neural networks, Basic models of artificial neural network, important terminologies of ANNs. McCulloch-Pitts neuron, linear separability, Hebb network.

UNIT - II

Supervised Learning Neural Networks: Perceptron networks, Adaptive linear neuron (Adaline), Multiple Adaptive linear neuron (Madaline), Back propagation network.

UNIT - III

Unsupervised Learning Neural Networks: Kohonen Self Organising networks, Adaptive resonance theory. Associate Memory Networks: Bidirectional associative memory network, Hopfield networks.

UNIT - IV

Fuzzy Logic: Introduction to classical sets and Fuzzy sets, Fuzzy relations, Tolerance and equivalence relations, Membership functions, Defuzzification.

UNIT - V

Genetic Algorithms: Introduction, Basic operators and terminology, Traditional algorithm vs. genetic algorithm, Simple genetic algorithm, General genetic algorithm, Classification of genetic algorithm, Genetic programming, Applications of genetic algorithm.

Case study: Activation function design / ANN design/ Any ANN Algorithm (User defined code/algorithm)

TEXT BOOK:

1. S.N. Sivanandam& S.N. Deepa, "Principles of soft computing", Wiley publications, 2nd Edition, 2011.

- S. Rajasekaran & G.A. Vijayalakshmipai, "Neural Networks, Fuzzy logic & Genetic Algorithms, Synthesis & Applications", PHI publication, 2008.
- 2. LiMin Fu, "Neural Networks in Computer Intelligence", McGraw-Hill edition, 1994.

SOFTWARE TESTING METHODOLOGIES (Professional Elective - II)

B.Tech. III Year II Sem.

LTPC

3 0 0 3

Prerequisites

1. Software Engineering

Course Objectives

- To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
- To develop skills in software test automation and management using the latest tools.

Course Outcomes

- Understand purpose of testing and path testing
- · Understand strategies in data flow testing and domain testing
- · Develop logic-based test strategies
- · Understand graph matrices and its applications
- Implement test cases using any testing automation tool

UNIT - I

Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT - II

Transaction Flow Testing: transaction flows, transaction flow testing techniques.

Data Flow testing: Basics of data flow testing, strategies in data flow testing, application of data flow testing.

Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT - III

Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.

Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT - IV

State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT - V

Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like Jmeter/selenium/soapUI/Catalon).

TEXT BOOKS:

- 1. Software Testing techniques Baris Beizer, Dreamtech, second edition.
- 2. Software Testing Tools Dr. K. V. K. K. Prasad, Dreamtech.

- 1. The craft of software testing Brian Marick, Pearson Education.
- 2. Software Testing Techniques SPD(Oreille)
- 3. Software Testing in the Real World Edward Kit, Pearson.
- 4. Effective methods of Software Testing, Perry, John Wiley.
- 5. Art of Software Testing Meyers, John Wiley.

INFORMATION RETRIEVAL SYSTEMS (Professional Elective - II)

B.Tech. III Year I Sem.

LTPC

3 0 0 3

Prerequisites:

1. Data Structures

Course Objectives:

- · To learn the concepts and algorithms in Information Retrieval Systems
- To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

Course Outcomes:

- Ability to apply IR principles to locate relevant information large collections of data
- · Ability to design different document clustering algorithms
- · Implement retrieval systems for web search tasks.
- · Design an Information Retrieval System for web search tasks.

UNIT - I

Introduction to Information Retrieval Systems: Definition of Information Retrieval System, Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database Management Systems, Digital Libraries and Data Warehouses Information Retrieval System Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities

UNIT - II

Cataloging and Indexing: History and Objectives of Indexing, Indexing Process, Automatic Indexing, Information Extraction Data Structure: Introduction to Data Structure, Stemming Algorithms, Inverted File Structure, N-Gram Data Structures, PAT Data Structure, Signature File Structure, Hypertext and XML Data Structures, Hidden Markov Models.

UNIT - III

Automatic Indexing: Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages

Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of Clusters

UNIT - IV

User Search Techniques: Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext

Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies

UNIT - V

Text Search Algorithms: Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems

Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval

TEXT BOOK:

 Information Storage and Retrieval Systems – Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer

- Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992.
- 2. Information Storage & Retrieval by Robert Korfhage John Wiley & Sons.
- 3. Modern Information Retrieval by Yates and Neto Pearson Education.

PATTERN RECOGNITION (Professional Elective - II)

B.Tech. III Year II Sem.

LTPC

3 0 0 3

Prerequisites:

- Programming for problem solving
- Computer Oriented Statistical Methods

Course Objectives:

 Introducing fundamental concepts, theories, and algorithms for pattern recognition and machine learning.

Course Outcomes:

- Understand the importance of pattern recognition and its representation
- Analyza the variants of NN algorithm
- Understand the necessity of Hidden markov models, decision tree and SVM for classification
- · Understand different types of clustering algorithms

UNIT - I

Introduction: Pattern Recognition, Data Sets for Pattern Recognition, Different Paradigms for Pattern Recognition. Representation: Data Structures for Pattern Representation, Representation of Clusters, Proximity Measures, Size of Patterns, Abstractions of the Data Set, Feature Extraction, Feature Selection, Evaluation of Classifier, Evaluation of Clustering.

UNIT - II

Nearest Neighbor Based Classifier: Nearest Neighbor Algorithm, Variants of the NN Algorithm, use of the Nearest Neighbor Algorithm for Transaction Databases, Efficient Algorithms, Data Reduction, Prototype Selection. Bayes Classifier: Bayes Theorem, Minimum Error Rate Classifier, Estimation of Probabilities, Comparison with the NNC, Naïve Bayes Classifier, Bayesian Belief Network.

UNIT - III

Hidden Markov Models: Markov Models for Classification, Hidden Morkov Models, Classification using HMMs. Decision Trees: Introduction, Decision Tree for Pattern Classification, Construction of Decision Trees, Splitting at the Nodes, Overfitting and Pruning, Examples of Decision Tree Induction.

UNIT-IV

Support Vector Machines: Introduction, Learning the Linear Discriminant Functions, Neural Networks, SVM for Classification. Combination of Classifiers: Introduction, Methods for Constructing Ensembles of Classifiers, Methods for Combining Classifiers.

UNIT - V

Clustering: Importance of clustering, Hierarchical Algorithms, Partitional Clustering, Clustering Large Data Sets. An Application-Hand Written Digit Recognition: Description of the Digit Data, Preprocessing Data, Classification Algorithms, Selection of Representative Patterns, Results.

TEXT BOOK:

1. Pattern Recognition: An Algorithmic Approach: Murty, M. Narasimha, Devi, V. Susheela,

Spinger Pub, 1st Ed.

- 1. Machine Learning Mc Graw Hill, Tom M. Mitchell.
- 2. Fundamentals Of Speech Recognition: Lawrence Rabiner and Biing- Hwang Juang. PrenticeHall Pub.

FULLSTACK DEVELOPMENT (Professional Elective II)

B.Tech. III Year II Sem

L T P C

3 0 0 3

Pre-Requisites:

- 1. Object Oriented Programming
- 2. Web Technologies

Course Objectives:

Students will become familiar to implement fast, efficient, interactive and scalable web
applications using run time environment provided by the full stack components.

Course Outcomes:

- Understand Full stack components for developing web application.
- Apply packages of NodeJS to work with Data, Files, Http Requests and Responses.
- Use MongoDB data base for storing and processing huge data and connects with NodeJS application.
- Design faster and effective single page applications using Express and Angular.
- Create interactive user interfaces with react components.

UNIT-I

Introduction to Full Stack Development:

Understanding the Basic Web Development Framework- User, Browser, Webserver, Backend Services, Full Stack Components - Node.js, MongoDB, Express, React, Angular. Java Script Fundamentals, NodeJS-Understanding Node.js, Installing Node.js, Working with Node Packages, creating a Node.js Application, Understanding the Node.js Event Model, Adding Work to the Event Queue, Implementing Callbacks.

UNIT-II

Node.js:

Working with JSON, Using the Buffer Module to Buffer Data, Using the Stream Module to Stream Data, Accessing the File System from Node.js- Opening, Closing, Writing, Reading Files and other File System Tasks. Implementing HTTP Services in Node.js- Processing URLs, Processing Query Strings and Form Parameters, Understanding Request, Response, and Server Objects, Implementing HTTP Clients and Servers in Node.js, Implementing HTTPS Servers and Clients. Using Additional Node.js Modules-Using the os Module, Using the util Module, Using the dns Module, Using the crypto Module.

UNIT-III

MongoDB:

Need of NoSQL, Understanding MongoDB, MongoDB Data Types, Planning Your Data Model, Building the MongoDB Environment, Administering User Accounts, Configuring Access Control, Administering Databases, Managing Collections, Adding the MongoDB Driver to Node.js, Connecting to MongoDB from Node.js, Understanding the Objects Used in the MongoDB Node.js Driver, Accessing and Manipulating Databases, Accessing and Manipulating Collections

UNIT-IV

Express and Angular:

Getting Started with Express, Configuring Routes, Using Requests Objects, Using Response Objects. Angular: importance of Angular, Understanding Angular, creating a Basic Angular Application, Angular Components, Expressions, Data Binding, Built-in Directives, Custom Directives, Implementing Angular Services in Web Applications.

UNIT-V

React:

Need of React, Simple React Structure, The Virtual DOM, React Components, Introducing React Components, Creating Components in React, Data and Data Flow in React, Rendering and Life Cycle Methods in React, Working with forms in React, integrating third party libraries, Routing in React.

TEXT BOOKS:

- Brad Dayley, Brendan Dayley, Caleb Dayley, Node.js, MongoDB and Angular Web Development, 2nd Edition, Addison-Wesley, 2019.
- 2. Mark Tielens Thomas, React in Action, 1st Edition, Manning Publications.

- 1. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, Apress, 2019.
- 2. Chris Northwood, The Full Stack Developer: Your Essential Guide to the Everyday Skills Expected of a Modern Full Stack Web Developer', 1st edition, Apress, 2018.
- 3. Kirupa Chinnathambi, Learning React: A Hands-On Guide to Building Web Applications Using React and Redux, 2nd edition, Addison-Wesley Professional, 2018.

DATA WAREHOUSING AND BUSINESS INTELLIGENCE (Pr ofessional Elective – II)

B.Tech. III Year II Sem.

 $\mathsf{L} \ \mathsf{T} \ \mathsf{P} \ \mathsf{C}$

3 0 0 3

CourseObjectives:

- This course is concerned with extracting data from the information systems that deal with the day-to-day operations and transforming it into data that can be used by businesses to drive high-level decision making
- Students will learn how to design and create a data warehouse, and how to utilize the process
 of extracting, transforming, and loading (ETL) data into data warehouses.

Course Outcomes:

- Understand architecture of data warehouse and OLAP operations.
- Understand Fundamental concepts of BI
- Application of BI Key Performance indicators
- Understand Utilization of Advanced BI Tools and their Implementation.
- Implementation of BI Techniques and BI Ethics.

UNIT - I

Data Warehouse, Data Warehouse Modelling, OLAP operations, Data Qube Computation methods

UNIT - II

Business Intelligence Introduction – Definition, Leveraging Data and Knowledge for BI, BI Components, BI Dimensions, Information Hierarchy, Business Intelligence and Business Analytics. BI Life Cycle. Data for BI - Data Issues and Data Quality for BI.

UNIT - III

BI Implementation - Key Drivers, Key Performance Indicators and Performance Metrics, BI Architecture/Framework, Best Practices, Business Decision Making, Styles of BI-vent-Driven alerts-A cyclic process of Intelligence Creation. The value of Business Intelligence-Value driven and Information use.

UNIT - IV

Advanced BI – Big Data and BI, Social Networks, Mobile BI, emerging trends, Description of different BI-Tools (Pentaho, KNIME)

UNIT-V

Business Intelligence and integration implementation-connecting in BI systems- Issues of legality-Privacy and ethics- Social networking and BI.

TEXT BOOKS:

- Data Mining Concepts and Techniques JIAWEI HAN & MICHELINE KAMBER, Elsevier, 4th Edition.
- 2. Rajiv Sabherwal "Business Intelligence" Wiley Publications, 2012.

- Efraim Turban, Ramesh Sharda, Jay Aronson, David King, Decision Support and Business Intelligence Systems, 9th Edition, Pearson Education, 2009.
- David Loshin, Business Intelligence The Savy Manager's Guide Getting Onboard with Emerging IT, Morgan Kaufmann Publishers, 2009.

- Philo Janus, Stacia Misner, Building Integrated Business Intelligence. Solutions with SQL Server, 2008 R2 & Office 2010, TMH, 2011.
- 4. Business Intelligence Data Mining and Optimization for decision making [Author: Carlo-Verellis] [Publication: (Wiley)]
- Data Warehousing, Data Mining & OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007
- 6. Building the Data Warehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd.
- 7. Data Mining Introductory and Advanced topics Margaret H Dunham, PEA.

FUNDAMENTALS OF AI (Open Elective – I)

B.Tech. III Year II Sem.

L T P C 3 0 0 3

Course Objective:

- To learn the difference between optimal reasoning Vs human like reasoning
- To understand the notions of state space representation, exhaustive search, heuristic search along with the time and space complexities
- To learn different knowledge representation techniques
- To understand the applications of Al namely, Game Playing, Theorem Proving, Expert Systems, Machine Learning and Natural Language Processing

Course Outcomes:

- Gain the knowledge of what is AI, risks and benefits of AI, limits of AI and the ethics involved in building an AI application.
- Understand the nature of environments and the structure of agents.
- Possess the ability to select a search algorithm for a problem and characterize its time and space complexities.
- Possess the skill for representing knowledge using the appropriate technique
- Gain an understanding of the applications of Al

UNIT - I

Foundations of Al: Introduction to Al, History of Al, Strong and Weak Al, The State of the Art, Risks and Benefits of Al

Philosophy, Ethics and Safety of AI: The Limits of AI, Machine thinking capability, The Ethics of AI **Intelligent Agents:** Agents and Environments, Good Behavior: The Concept of Rationality, The Nature of Environments, The Structure of Agents.

UNIT - II

Solving Problems by Searching: Problem – Solving Agents

Uninformed Search Strategies: Best-First Search, Breadth-First Search, Uniform-Cost Search,

Depth-First Search, Iterative Deepening Search and Bidirectional Search

Informed Search Strategies: Greedy Best-First Search, A* Search

UNIT - III

Logical Agents: Knowledge-based agents, Propositional Logic, Propositional Theorem Proving

First-Order Logic: Syntax and Semantics of First-Order Logic

Inference in First-Order Logic: Propositional Vs. First-Order Inference, Unification and First-Order

Inference, Forward Chaining, Backward Chaining

Knowledge Representation: Ontological Engineering, Categories and Objects, Events

UNIT - IV

Quantifying Uncertainty: Basic Probability Notation, Inference Using Full-Joint Distributions, Independence, Bayes' Rule and its Use, Naive Bayes Models

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The semantics of Bayesian Networks, Exact Inference in Bayesian Networks

UNIT - V

Learning from Examples: Forms of Learning, Supervised Learning, Learning Decision Trees, Model Selection, Linear Regression and Classification, Ensemble Learning

Natural Language Processing: Language Models, Grammar, Parsing, Complications of Real Natural Language, Natural Language Tasks

Robotics: Robots, Robot Hardware, Kind of Problems solved, Application Domains

Computer Vision: Simple Image Features, Using Computer Vision

TEXT BOOKS:

1. "Artificial Intelligence a Modern Approach", Fourth Edition, Stuart J. Russell & Peter Norvig – Pearson.

- 1. "Artificial Intelligence", Elaine Rich, Kevin Knight & Shivashankar B Nair McGraw Hill Education.
- 2. Artificial Intelligence, 3rd Edn, E. Rich and K. Knight (TMH)
- 3. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 4. Artificial Intelligence, Shivani Goel, Pearson Education.
- 5. Artificial Intelligence and Expert systems Patterson, Pearson Education

MACHINE LEARNING BASICS (Open Elective - I)

B.Tech. III Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- To introduce students to the basic concepts and techniques of Machine Learning.
- To have a thorough understanding of the Supervised and Unsupervised learning techniques
- To study the various probability-based learning techniques

Course Outcomes:

- Distinguish between, supervised, unsupervised and semi-supervised learning
- Understand algorithms for building classifiers applied on datasets of non-linearly separable classes
- Understand the principles of evolutionary computing algorithms
- Design an ensembler to increase the classification accuracy

UNIT - I

Learning – Types of Machine Learning – Supervised Learning – The Brain and the Neuron – Design a Learning System – Perspectives and Issues in Machine Learning – Concept Learning Task – Concept Learning as Search – Finding a Maximally Specific Hypothesis – Version Spaces and the Candidate Elimination Algorithm – Linear Discriminants: – Perceptron – Linear Separability – Linear Regression.

UNIT - II

Multi-layer Perceptron Going Forwards – Going Backwards: Back Propagation Error – Multi-layer Perceptron in Practice – Examples of using the MLP – Overview – Deriving Back-Propagation

UNIT - III

Learning with Trees – Decision Trees – Constructing Decision Trees – Classification and Regression Trees – Ensemble Learning – Boosting – Bagging – Different ways to Combine Classifiers – Nearest Neighbor Methods – Unsupervised Learning – K means Algorithms

UNIT - IV

Support Vector Machines

Evolutionary Learning – Genetic algorithms – Genetic Offspring: - Genetic Operators – Using Genetic Algorithms

UNIT-V

Reinforcement Learning – Overview – Getting Lost Example

Markov Chain Monte Carlo Methods – Sampling – Proposal Distribution – Markov Chain Monte Carlo – Hidden Markov Models

TEXT BOOKS:

1. Stephen Marsland, —Machine Learning – An Algorithmic Perspective, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.

- 1. Tom M Mitchell, —Machine Learning, First Edition, McGraw Hill Education, 2013.
- 2. Peter Flach, —Machine Learning: The Art and Science of Algorithms that Make Sense of Datall, First Edition, Cambridge University Press, 2012.
- 3. Jason Bell, —Machine learning Hands on for Developers and Technical ProfessionalsII, First Edition, Wiley, 2014
- 4. Ethem Alpaydin, —Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series), Third Edition, MIT Press, 2014.