

Department of Mechanical Engineering

Circular

It is informed that the fourth BoS Meeting will be held on 8th February 2025 at 3:00 pm through online mode to discuss the following agenda points.

ITEM NO.1: To confirm the minutes of previous BOS meeting.

ITEM NO.2: To approve syllabus proposal for IV B.Tech I Semester Theory subjects, taught by Mechanical Engineering department to Mechanical Engineering students of SIET.

ITEM NO.3: To approve Project Stage-I offered to the students of IV B.Tech I Semester students of Mechanical Engineering.

ITEM NO.4: To approve syllabus proposal for IV B.Tech I Semester Theory subjects (Open Elective-II), taught by Mechanical Engineering department to the students of other branch of SIET.

ITEM NO.5: To approve syllabus proposal for IV B.Tech II Semester Theory subjects, taught by Mechanical Engineering department to Mechanical Engineering students of SIET.

ITEM NO.6: To approve syllabus proposal for IV B.Tech II Semester Theory subjects (Open Elective-III), taught by Mechanical Engineering department to the students of other branch of SIET.

ITEM NO.7: To approve Project Stage-II offered to the students of IV B. Tech II Semester students of Civil Engineering.

ITEM NO.8: Any other matter as per approval of chairman BOS.

CHAIRMAN
BOS MED

**Minutes of IV Board of Studies Meeting
held by Mechanical Engineering Department on 8 Feb 2025**

Minutes of Board of studies of Mechanical Engineering Meeting held on 08 Feb 2025 at 3.00 PM, for B.Tech students admitted during the Academic Year 2022-23 as per SIET 22 Regulations. The Meeting was conducted through online mode.

ITEM NO.1: The minutes of previous BOS meeting are confirmed.

ITEM NO.2: The syllabus for IV B.Tech I Semester Theory subjects, taught by Mechanical Engineering department to Mechanical Engineering students of SIET are approved.

S.No.	Course Code	Course Title	L	T	P	Credits
1.		Industrial Management	2	0	0	2
2.		Refrigeration & Air Conditioning	3	0	0	3
3.		Professional Elective-II	3	0	0	3
4.		Professional Elective-III	3	0	0	3
5.		Professional Elective-IV	3	0	0	3

Professional Elective-II

	Additive Manufacturing
	Automation in Manufacturing
	Artificial Intelligence in Mechanical Engineering
	Mechatronics

Professional Elective-III

	Power plant Engineering
	Automobile Engineering
	Non-Conventional Energy Sources
	Solar Energy Technology

Professional Elective-IV

	Re-Engineering
	Computational Fluid Dynamics
	Turbo Machinery
	Fluid Power System

ITEM NO.3: The Project Stage-I offered to the students of IV B.Tech I Semester students of Mechanical Engineering is approved.

S.No.	Course Code	Course	L	T	P	Credits	Remarks
1		Project Stage - I	0	0	6	3	

ITEM NO.4: The syllabus for IV B.Tech I Semester Theory subjects (Open Elective-II), taught by Mechanical Engineering department to the students of other branch of SIET are approved.

S.No.	Course Code	Course	L	T	P	Credits	Remarks
1		Quantitative Analysis For Business Decisions	3	0	0	3	
2		Principles of Entrepreneurship	3	0	0	3	

ITEM NO.5: The syllabus for IV B.Tech II Semester Theory subjects, taught by Mechanical Engineering department to Mechanical Engineering students of SIET are approved.

S.No.	Course Code	CourseTitle	L	T	P	Credits
1.		Professional Elective-V	3	0	0	3
2.		Professional Elective-VI	3	0	0	3

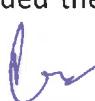
Professional Elective-V

	Industrial Robotics
	Mechanical Vibrations
	Composite Materials
	Energy Conservation and Management

Professional Elective-VI

	Industry4.0
	Fuzzy Logic and ANN
	Electric and Hybrid Vehicles
	Total Quality Management

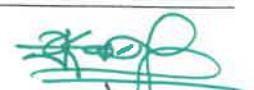
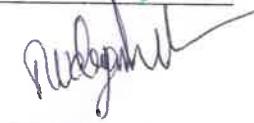
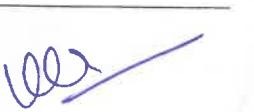
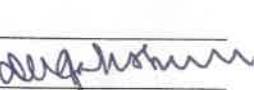
ITEM NO.6: The syllabus for IV B.Tech II Semester Theory subjects (Open Elective-III), taught by Mechanical Engineering department to the students of other branch of SIET are approved.


S.No.	Course Code	Course	L	T	P	Credits	Remarks
1		Industrial Engineering & Management	3	0	0	3	
2		Elements Of Electric And Hybrid Vehicles	3	0	0	3	

ITEM NO.7: The Project Stage-II offered to the students of IV B. Tech II Semester studying Mechanical Engineering is approved.

S.No.	Course Code	Course	L	T	P	Credits	Remarks
1		Project Stage – II including Seminar	0	0	22	11	

ITEM NO.8: As there were no points mentioned by members, the Chairman concluded the meeting with vote of thanks.

CHAIRMAN
BOS MED

Department of Mechanical Engineering

Board of Studies - Members

S.No	Name	Designation	Position	Signature
1	Mr. Y.Krishnaiah	HoD, ME	Chairman	
2	Dr. K Vasantha Kumar	Assoc.Prof of ME, JNTUH, UCEJ	University Nominee	
3	Dr. Uday Bhaskar	Senior Manager, Hindustan Aeronautical Limited	Industrialist	
4	Mr. KLN.Murthy	Asst.Prof, SIET	Specialized Faculty-3	
5	Mr. T.Abhishake	3-D Solution Entrepreneur	Alumni Student	
6	Dr. K.Chandra shekar	Professor of M.E. and Dean Academics,Vignan Institute of Technology and Science	Subject Expert-1	
7	Dr. M.Nagarjuna	Associate Professor, Department of Mechanical engineering, Brilliant institute of Enginnering And Technology, Hyderabad	Subject Expert-2	
8	Mr. DV.Paleshwer	Asst.Prof, SIET	Faculty	
9	Mr. T.Ravi	Asst. Prof, SIET	Faculty	
10	Mr. B.Sanjanna	Asst. Prof, SIET	Faculty	
11	Mr. K.Ch.Gnana Praksh	Asst. Prof, SIET	Faculty	

You have extensions installed that may affect the quality of your call

me.hod.sreyas (Presenting)

IV Year I Semester

No.	Course Code	Course Title	L	T	P	Credits
1.		Industrial Management	2	0	0	2
2.		Refrigeration & Air Conditioning	3	0	0	3
3.		Professional Elective III	3	0	0	3
4.		Professional Elective IV	3	0	0	3
5.		Open Elective II	3	0	0	3
6.		Project Stage I	0	0	0	3
		Total	17	0	0	20

3:12 PM | rxq-zfrx-ufr

You have extensions installed that may affect the quality of your call


me.hod.sreyas (Presenting)

IV Year II Semester

No.	Course Code	Course Title	L	T	P	Credits
1.		Professional Elective V	3	0	0	3
2.		Professional Elective VI	3	0	0	3
3.		Open Elective III	3	0	0	3
4.		Project Stage II including seminar	3	0	0	3
		Total Credits	12	0	0	12

3:12 PM | rxq-zfrx-ufr

B.Tech. in MECHANICAL ENGINEERING

COURSE STRUCTURE & SYLLABUS (R22 Regulations)

Applicable from AY 2022-23 Batch

IV YEAR I SEMESTER

S.No.	Course Code	Course Title	L	T	P	Credits
1.		Industrial Management	2	0	0	2
2.		Refrigeration & Air Conditioning	3	0	0	3
3.		Professional Elective-II	3	0	0	3
4.		Professional Elective-III	3	0	0	3
5.		Professional Elective-IV	3	0	0	3
6.		Open Elective-II	3	0	0	3
7.		Project Stage-I	0	0	6	3
Total Credits			17	0	6	20

IV YEAR II SEMESTER

S.No.	Course Code	Course Title	L	T	P	Credits
1.		Professional Elective-V	3	0	0	3
2.		Professional Elective-VI	3	0	0	3
3.		Open Elective-III	3	0	0	3
4.		Project Stage-II including seminar	0	0	22	11
Total Credits			9	0	22	20

Professional Electives offered in R22 regulations

Professional Elective-I

Unconventional Machining Processes
Production Planning & Control
Operations Research
Microprocessors in Automation

Professional Elective-II

Additive Manufacturing
Automation in Manufacturing
Artificial Intelligence in Mechanical Engineering
Mechatronics

1. *W* 2. *SS* 3. *M. Rayal* 4. *G* 5. *Abhishek* 6. *V.S*
 7. *H.G* 8. *Supashree. R.S* 9. *Ram* 10. *K. J*

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

Professional Elective—III

Power plant Engineering
Automobile Engineering
Non-Conventional Energy Sources
Solar Energy Technology

Professional Elective-IV

Re-Engineering
Computational Fluid Dynamics
Turbo Machinery
Fluid Power System

Professional Elective—V

Industrial Robotics
Mechanical Vibrations
Composite Materials
Energy Conservation and Management

Professional Elective—VI

	Industry 4.0
	Fuzzy Logic and ANN
	Electric and Hybrid Vehicles
	Total Quality Management

Open Electives in R22

Open Elective-I

	Basic Mechanical Engineering
	Renewable Energy Sources

Open Elective-II

Quantitative Analysis For Business Decisions
Principles of Entrepreneurship

Open Elective-III

Industrial Engineering & Management
Elements Of Electric And Hybrid Vehicles

1. Dr 2. ~~Dr~~ 3. B. B. B. 4. ~~Dr~~ 5. A. A. A.
6. Dr 7. ~~Dr~~ 8. ~~Dr~~ 9. ~~Dr~~ 10. ~~Dr~~
11. ~~Dr~~

INDUSTRIAL MANAGEMENT

B.Tech. IV Year, I Sem.

L	T	P	C
2	0	0	2

Prerequisites: None

Course objectives:

- Understand the philosophies of management gurus
- Understand the various types of organization structures and their features, and their advantages and disadvantages.
- Learn ing various Industrial Engineering Practices like Operations Management techniques, work study, statistical quality control techniques, Job evaluation techniques and network analysis techniques.

Course outcomes: At the end of the course, the student would be able to

- apply principles of management
- design the organization structure
- apply techniques for plant location, design plant layout and value analysis
- carry out work study to find the best method for doing the work and establish standard time for a given method
- apply various quality control techniques and sampling plans
- do job evaluation and network analysis.

UNIT – I:

Introduction to Management: Entrepreneurship and organization – Nature and Importance of Management, Functions of Management, Taylor’s Scientific Management Theory, Fayol’s Principles of Management, Maslow’s Theory of Human Needs, Douglas McGregor’s Theory X and Theory Y, Herzberg’s Two-Factor Theory of Motivation, Systems Approach to Management, Leadership Styles, Social responsibilities of Management

UNIT – II:

Designing Organizational Structures: Departmentalization and Decentralization, Types of Organization structures – Line organization, Line and staff organization, functional organization, Committee organization, matrix organization, Virtual Organization, Cellular Organization, team structure, boundary less organization, inverted pyramid structure, lean and flat organization structure and their merits, demerits and suitability.

UNIT – III:

Operations Management: Objectives- product design process- Process selection-Types of production system (Job, batch and Mass Production), Plant location-factors- Urban-Rural sites comparison- Types of Plant Layouts- Design of product layout- Line balancing (RPW method) Value analysis-Definition- types of values- Objectives- Phases of value analysis- Fast diagram

UNIT - IV:

Work Study: Introduction — definition — objectives — steps in work study — Method study — definition, objectives — steps of method study. Work Measurement — purpose — types of study

Ch. S. S. R. B. A. A. S. 6. 19. 2. M. G.

— stop watch methods — steps — key rating — allowances — standard time calculations — work sampling.

Statistical Quality Control: variables-attributes, Shewart control charts for variables- chart, R chart, — Attributes- Defective-Defect- Charts for attributes-p-chart -c chart (simple Problems), Acceptance Sampling- Single sampling- Double sampling plans-OC curves.

UNIT – V:

Job Evaluation: Methods of job evaluation — simple routing objective systems — classification method factor comparison method, point method, benefits of job evaluation and limitations.

Project Management (PERT/CPM): Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), Identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing. (simple problems)

TEXT BOOKS:

1. Industrial Engineering and Management/O.P. Khanna/Khanna Publishers.
2. Industrial Engineering and Management Science/T.R. Banga and S.C. Sarma/Khanna Publishers.

REFERENCE BOOKS:

1. Motion and Time Study by Ralph M Barnes! John Willey & Sons Work Study by ILO.
2. Human factors in Engineering & Design/Ernest J McCormick /TMH.
3. Production & Operation Management /Paner Selvam/PHI.
4. Industrial Engineering Management/NVS Raju/Cengage Learning.
5. Industrial Engineering Hand Book/Maynard.
6. Industrial Engineering Management I Ravi Shankar/Galgotia

1. 2. 3. 4. 5.
6. 7.

REFRIGERATION & AIR CONDITIONING

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Prerequisites: Thermodynamics

Course Objectives:

- Apply the principles of thermodynamics to analyze different types of refrigeration and HAV
- To understand the functionality of the major components of the refrigeration and HAV
- To apply the knowledge in effective refrigeration and HAV systems for better performances in real context
- Discuss the heating procedure by Air conditioning process
- Explain the requirement of ventilation devices/processes

Course Outcomes:

- Differentiate between different types of refrigeration systems with respect to application as well as conventional & unconventional refrigeration systems.
- Analyse thermodynamically low temperature refrigeration and Vapour absorption refrigeration for evaluation of performance parameters.
- Apply the air refrigeration principles for different types of Air craft refrigeration systems
- Elaborate the principles of psychometrics to design the air conditioning heating /cooling loads for industrial applications.
- Explain the requirement of ventilation air, various sources of infiltration air, ventilation and infiltration as a part of cooling load

UNIT- I:

Vapour Compression Refrigeration: Performance of Complete vapor compression system.

Actual Vs Ideal cycle - Effect of operating parameters on COP, Components of Vapor Compression System: The condensing unit – Evaporators – Expansion valve – Refrigerants – Properties – ODP & GWP - Load balancing of vapor compression Unit.

Compound Compression: Flash inter-cooling – flash chamber – Multi-evaporator & Multistage systems.

UNIT- II:

Production of Low Temperature: Liquefaction system, Liquefaction of gases, Hydrogen and Helium, Cascade System – Applications– Dry ice system.

Vapor absorption system – Simple and modified aqua – ammonia system – Representation on Enthalpy –Concentration diagram.

Lithium – Bromide system Three fluid system – HCOP.

UNIT- III:

Air Refrigeration: Applications – Air Craft Refrigeration -Simple, Bootstrap, Regenerative and Reduced ambient systems – Problems based on different systems.

1 2 3 4 5 6 7 8

Steam Jet refrigeration system: Representation on T-s and h-s diagrams – limitations and applications.

Unconventional Refrigeration system – Thermo-electric – Vortex tube & Pulse tube – working principles.

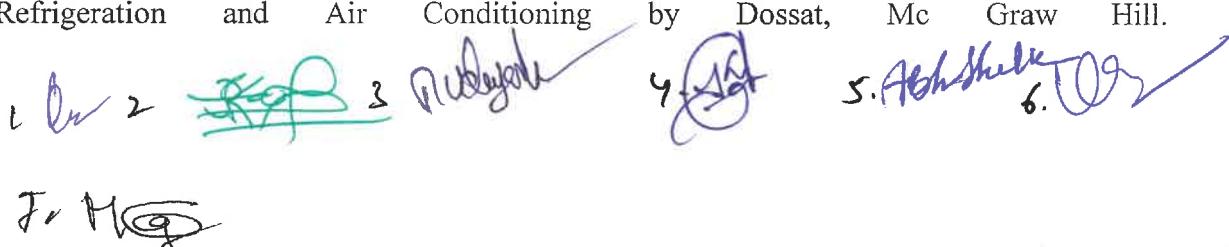
UNIT- IV:

Air Conditioning: Psychometric properties and processes – Construction of Psychometric chart. Requirements of Comfort Air –conditioning – Thermodynamics of human body – Effective temperature and Comfort chart – Parameters influencing the Effective Temperature.

Heating Load Calculations: Summer/ Winter heating load calculation-heat losses through structure- heat losses due to infiltration. Effects of solar radiation and internal heat sources on heating loads. Air Heating System: Classification - gravity warm heating system, forced warm air heating system balancing a warm air heating system, warm air furnaces, air cleaners, humidifiers & De-humidifiers

UNIT- V:

Air Conditioning Systems: All Fresh air, Re-circulated air with and without bypass, with reheat systems – Calculation of Bypass Factor, ADP, RSHF, ESHF and GSHF for different systems.


Ventilation: Ventilation and Infiltration: Requirement of ventilation air, various sources of infiltration air, ventilation and infiltration as a part of cooling load. Fans and Blowers: Types, performance characteristics, series and parallel arrangement, selection procedure. Equipments and Controls: Chillers, Condensing units, Cooling coils, bypass factors, humidifiers, dehumidifiers

TEXT BOOKS:

1. Refrigeration & Air Conditioning by C.P. Arora, TMH.
2. Refrigeration & Air Conditioning by Arora & Domkundwar, Dhanpat Rai.
3. Refrigeration and Air Conditioning by Manohar Prasad

REFERENCE BOOKS:

1. Basic Refrigeration & Air Conditioning by P.N. Ananthanarayanan, McGraw Hill.
2. Refrigeration and Air Conditioning by Stoecker, Mc Graw Hill.
3. Refrigeration and Air Conditioning by Dr. S.S. Thipse, Jaico.
4. Refrigeration and Air Conditioning by Jordan& Preister, Prentice Hall.
5. Refrigeration and Air Conditioning by Dossat, Mc Graw Hill.

1. Dr 2. ~~Refr~~ 3. ~~Refr~~ 4. ~~Refr~~ 5. ~~Refr~~ 6. ~~Refr~~
J. M.

ADDITIVE MANUFACTURING (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Pre-requisites: Manufacturing Processes, Engineering Materials

Course Objectives:

- To understand the fundamental concepts of Additive Manufacturing (i.e. Rapid Prototyping) and 3-D printing, its advantages and limitations.
- To classify various types of Additive Manufacturing Processes and know their working principle, advantages, limitations etc.
- To have a holistic view of various applications of these technologies in relevant fields such as mechanical, Bio-medical, Aerospace, electronics etc.

Course Outcomes: After the completion of the course, the student will be able to

- Explain and summarize the principles and key characteristics of additive manufacturing technologies and commonly used 3D printing and additive manufacturing systems.
- Describe various liquid based Rapid Prototyping systems.
- Understand and apply different powder based Rapid Prototype systems.
- Describe various CAD issues for 3D printing and rapid prototyping and related operations for STL model manipulation.
- Understand and apply Rapid prototyping in various applications like forensic science, anthropology and medicine etc.

UNIT - I:

Introduction: Prototyping fundamentals, Historical development, Fundamentals of Rapid Prototyping, Advantages and Limitations of Rapid Prototyping, Commonly used Terms, Classification of RP process, Rapid Prototyping Process Chain: Fundamental Automated Processes.

UNIT - II:

Liquid-based Rapid Prototyping Systems: Stereo lithography Apparatus (SLA): Models and specifications, Process, working principle, photopolymers, photo polymerization, Layering technology, laser and laser scanning, Applications, Advantages and Disadvantages, Case studies. Solid ground curing (SGC): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. **Solid-based Rapid Prototyping Systems:** Laminated Object Manufacturing (LOM): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Fused Deposition Modeling (FDM): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies.

UNIT - III:

Powder Based Rapid Prototyping Systems: Selective laser sintering (SLS): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Three dimensional Printing (3DP): Models and specifications, Process, working principle,

Applications, Advantages and Disadvantages, Case studies. Rapid Tooling: Introduction to Rapid Tooling (RT), Conventional Tooling Vs RT, Need for RT. Rapid Tooling Classification; Indirect Rapid Tooling Methods: Spray Metal Deposition, RTV Epoxy Tools, Ceramic tools, Investment Casting, Spin Casting, Die casting, Sand Casting, 3D Keltool process. Direct Rapid Tooling: Direct AIM, LOM Tools, DTM Rapid Tool Process, EOS Direct Tool Process and Direct Metal Tooling using 3DP

UNIT – IV:

Rapid Prototyping Data Formats: STL Format, STL File Problems, Consequence of Building Valid and Invalid Tessellated Models, STL file Repairs: Generic Solution, Other Translators, Newly Proposed Formats. Rapid Prototyping Software's: Features of various RP software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor.

UNIT – V:

RP Applications: Application - Material Relationship, Application in Design, Application in Engineering, Analysis and Planning, Aerospace Industry, Automotive Industry, Jewelry Industry, Coin Industry, GIS application, Arts and Architecture. RP Medical and Bioengineering Applications: Planning and simulation of complex surgery, Customized Implants & Prostheses, Design and Production of Medical Devices, Forensic Science and Anthropology, Visualization of Biomolecules.

TEXT BOOKS:

1. Rapid prototyping; Principles and Applications /Chua C.K., Leong K.F. and LIM C.S/World Scientific Publications/3rd Edition, 2010
2. Rapid Manufacturing /D.T. Pham and S.S. Dimov/Springer/1st Edition, 2012

REFERENCE BOOKS:

1. Terry Wohlers, Wholers Report 2000, Wholers Associates.
2. Rapid Prototyping and Manufacturing /PaulF. Jacobs/ASME/ 1st Edition, 1993.

1. 2. 3. 4. 5.

AUTOMATION IN MANUFACTURING (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Course Objectives:

- To understand types of Automation and production system technologies in modern manufacturing.
- To understand importance of automated flow lines in manufacturing a product.
- To understand the Assembly system and Line Balancing in Manufacturing System.
- To understand Automated Material handling equipments and Automated Storage Systems.
- To understand industrial control and automatic inspection techniques.

Course Outcomes: After the completion of the course, the student will be able to

- Describe the importance of Automation implementation in Manufacturing.
- Analyze the various Automated flow lines.
- Perform Line balancing of assembly system.
- Describe automated Material Handling and automated storage
- Explain Industrial Process controls and automatic inspection.

UNIT – I:

Introduction: Types and strategies of automation, pneumatic and hydraulic components circuits, Automation in machine tools. Mechanical feeding and tool changing and machine tool control transfer the automation.

UNIT – II:

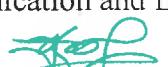
Automated flow lines: Methods of work part transport transfer Mechanical buffer storage control function, design and fabrication consideration.

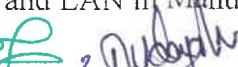
Analysis of Automated flow lines: General terminology and analysis of transfer lines without and with buffer storage, partial automation, implementation of automated flow lines.

UNIT – III:

Assembly system and line balancing: Assembly process and systems assembly line, line balancing methods, ways of improving line balance, flexible assembly lines.

UNIT – IV:


Automated material handling: Types of equipment, functions, analysis and design of material handling systems conveyor systems, automated guided vehicle systems.


Automated storage systems, Automated storage and retrieval systems; work in process storage, interfacing handling and storage with manufacturing.

UNIT – V:

Fundamentals of Industrial controls: Review of control theory, logic controls, sensors and actuators, Data communication and LAN in Manufacturing.

1 Cr

2.

3.

4.

5.

6.

7.

Business process Re-engineering: Introduction to BPE logistics, ERP, Software configuration of BPE.

TEXT BOOKS:

1. Automation, Production Systems and Computer Integrated Manufacturing: M.P. Groover. /Pearson Education/4th Edition, 2016.
2. Computer Control of Manufacturing Systems/ Yoram koren/ Mc Graw Hill/ 1st Edition, 1983.

REFERENCE BOOKS:

1. Computer Aided Manufacturing/ Tien-Chien Chang, Richard A. Wyskand Hsu- in Wang/Pearson/ 3rd Edition, 2005.
2. Automation /W. Buekinsham/PHI Publications/ 1st Edition, 2011.

1. 6 2. ~~160B~~ 3. ~~160B~~ 4. ~~160B~~ 5. ~~160B~~ 6. ~~160B~~ ✓
J. M. G

ARTIFICIAL INTELLIGENCE IN MECHANICAL ENGINEERING (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

UNIT - I: Introduction to Artificial Intelligence

Definition, History, Present state of Artificial Intelligence (AI), Phases of AI, Approaches to AI - Hard or Strong AI, Soft or Weak AI, Applied AI, Cognitive AI, and Applications domains focused on mechanical engineering,

UNIT - II: Problem Solving Methods

Problem solving methods-1. Uninformed search includes Depth First Search (DFS), Breadth First Search (BFS), Uniform Cost Search (UCS), Depth Limited Search, Iterative Deepening Depth First Search (IDDFS) and bidirectional search. 2. Informed Search (heuristic search) includes greedy best first search, A* search, memory bounded heuristic search, learning to search better, Simple problems

UNIT - III: Neural Networks

Introduction to Perceptron and Neural Networks, Activation and Loss functions, Single Neuron of Human and Human Brain Modelling, ANN architecture-Input layer, Hidden layer and output layer, Types of Neural Networks- Single layer feed-forward network, Multilayer feed-forward network, Multi-Layer Perceptron (MLP), Recurrent networks or feedback ANN, Characteristics of Neural Networks, Simple problems on Back Propagation Algorithms to minimize the error

UNIT - IV: Machine Learning

Unsupervised learning- Definition, basic concepts, applications, K-means Clustering, hierarchical Clustering, Dimension Reduction-PCA, Simple Examples

Supervised Learning - Definition, basic concepts, applications, Linear Regression, Multiple Variable Linear Regression, Logistic Regression, Naive Bayes Classifiers, k-NN Classification, Support Vector Machine, Simple Examples.

Reinforcement Learning (RL) - Framework, Component of RL Framework, Types of RL Systems. Q- learning, Examples of RL Systems, Simple Examples

UNIT - V: Ensemble Learning Techniques

Introduction on ensemble methods, Decision Trees, Bagging, Random Forests, Boosting, Simple Examples

TEXT BOOK:

1. Artificial Intelligence: A Modern Approach, Stuart Russell & Peter Norvig, Prentice-Hall, Third Edition (2009).

REFERENCE BOOKS:

1. Artificial Intelligence, Ela Kumar, Wiley, 2021
2. Artificial Intelligence: Concepts and Applications, Lavika Goel, Kindle Edition, Wiley, 2021.

1. *[Signature]* 2. *[Signature]* 3. *[Signature]* 4. *[Signature]* 5. *[Signature]* 6. *[Signature]* 7. *[Signature]*

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

3. Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems, Edited by Ganesh M. Kakandikar and Dinesh G. Thakur, CRC press, First edition, 2021.

1. b 2. ~~Kap~~ 3. Rukayat 4. Abi 5. Aishwarya 6. V

7. MQ

MECHATRONICS (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

UNIT - I:

Introduction: Overview, History of mechatronics, Scope and significance of Mechatronics systems, elements of Mechatronic systems, Needs and benefits of Mechatronics in manufacturing.

Sensors: Classification of sensors basic working principles, displacement sensor – linear and rotary potentiometers, LVDT and RVDT, incremental and absolute encoders, Proximity and range sensors – Eddy current sensor, ultrasonic sensor, laser interferometer transducer, hall Effect sensor, inductive Proximity switch, Light sensors – Photodiodes, Phototransistors, Flow Sensors – ultrasonic Sensor, Laser Doppler Anemometer, Tactile Sensors – PVDF tactile sensor, micro-switch and reed switch, Piezoelectric sensors, Vision Sensor.

UNIT - II:

Actuators: Electrical Actuators: Solenoids, relays, diodes, thyristors, triacs, BJT, FET, DC motor, Servo Motor, BLDC Motor, AC Motor, Stepper Motor, Hydraulic & pneumatic devices – Power supplies, valves, Cylinder sequencing, Design of hydraulic & pneumatic circuits. Piezo Electric Actuators, Shape memory alloys.

UNIT - III:

Basic System models & Analysis: Modeling of one & two degrees of freedom Mechanical, Electrical, fluid and thermal systems, block diagram representations of these systems. Dynamic Responses of System: Transfer function, modeling dynamic systems, first order systems, second order systems.

UNIT - IV:

Digital Electronics: Number systems, BCD codes and arithmetic, Gray codes, self-complimenting codes, Error detection and correction principles. Boolean functions using Karnaugh Map, Design of combinational circuits, design of arithmetic circuits, Design of code converters, encoders and decoders. **Signal Conditioning:** Operational amplifiers, inverting amplifier, differential amplifier, Protection, comparator, filters, multiplexer, Pulse width modulation counters, decoders. Data acquisition – Quantizing theory, Analog to digital conversion, digital to analog conversion.

Controllers: Classification of Control systems, Feedback, Closed loop and open loop systems PLC

UNIT - V:

Programming: PLC Principles of operation, PLC sizes, PLC hardware components, I/O section Analog I/O section, Analog I/O modules, digital I/O modules, CPU processor memory, module programming, Ladder Programming, ladder diagrams, Timers, Internal relays and counters, data handling, analogue input and output. Application on real time industrial automation systems.

Advanced Applications in Mechatronics: Sensors for condition monitoring, mechatronic control in automated manufacturing, Artificial intelligence in Mechatronics, micro sensors in mechatronics, Application of Washing machine as mechatronic device.

TEXT BOOKS:

1. 2. 3. 4. 5. 6. 7. 8.

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

1. W. Boton, "Mechatronics", 5th edition, Adison Wesley Longman ltd, 2010.
2. Mechatronics system design by Devdas Shetty and Richard A. Kolk, P.W.S. Publishing company, 2001.
3. Alciatore David G & Histand Michael B, "Introduction to Mechatronics and Measurement systems", 4th edition, Tata McGraw Hill, 2006

1. *Dr. B. S. Reddy* 2. *Dr. B. S. Reddy* 3. *Dr. B. S. Reddy* 4. *Dr. B. S. Reddy* 5. *Dr. B. S. Reddy* 6. *Dr. B. S. Reddy*

2. *M. G.*

POWER PLANT ENGINEERING (PROFESSIONAL ELECTIVE – III)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Pre-Requisites: None

Course Objectives: The goal of this course is to be aware of the design of conventional and alternative power-generation plants. The learning objectives include

- Analysis and preliminary design of the major systems of conventional fossil-fuel steam-cycle power plants.
- A working knowledge of the basic design principles of nuclear, gas turbine, combined cycle, hydro, wind, geothermal, solar, and alternate power plants.
- Awareness of the economic, environmental, and regulatory issues related to power generation.

Course Outcomes: At the end of the course students will be able to:

- Understand the concept of Rankine cycle.
- Understand working of boilers including water tube, fire tube and high-pressure boilers and determine efficiencies.
- Analyze the flow of steam through nozzles.
- Evaluate the performance of condensers and steam turbines.
- Evaluate the performance of gas turbines.

UNIT – I:

Introduction to the Sources of Energy – Resources and Development of Power in India.

Steam Power Plant: Plant Layout, Working of different Circuits, Fuel and handling equipments, types of coals, coal handling, choice of handling equipment, coal storage, Ash handling systems.

Combustion Process: Properties of coal – overfeed and underfeed fuel beds, traveling grate stokers, spreader stokers, retort stokers, pulverized fuel burning system and its components, combustion needs and draught system, cyclone furnace, design and construction, Dust collectors, cooling towers and heat rejection. Corrosion and feed water treatment.

UNIT – II:

Internal Combustion Engine Plant: Diesel Power Plant: Introduction – IC Engines, types, construction– Plant layout with auxiliaries – fuel supply system, air starting equipment, lubrication and cooling system – super charging.

Gas Turbine Plant: Introduction – classification - construction – Layout with auxiliaries – Principles of working of closed and open cycle gas turbines. Combined Cycle Power Plants and comparison.

UNIT – III:

Hydro Electric Power Plant: Water power – Hydrological cycle / flow measurement – drainage area characteristics – Hydrographs – storage and Pondage – classification of dams and spill ways.

Hydro Projects and Plant: Classification – Typical layouts – plant auxiliaries – plant operation pumped storage plants.

1. Dr 2. ~~Prof~~ 3. ~~Abdullah~~ 4. ~~Abdullah~~ 5. ~~Abdullah~~ 6. ~~Abdullah~~ 7. ~~Abdullah~~ 8. ~~Abdullah~~ 9. ~~Abdullah~~ 10. ~~Abdullah~~ 11. ~~Abdullah~~ 12. ~~Abdullah~~ 13. ~~Abdullah~~ 14. ~~Abdullah~~ 15. ~~Abdullah~~ 16. ~~Abdullah~~ 17. ~~Abdullah~~ 18. ~~Abdullah~~ 19. ~~Abdullah~~ 20. ~~Abdullah~~ 21. ~~Abdullah~~ 22. ~~Abdullah~~ 23. ~~Abdullah~~ 24. ~~Abdullah~~ 25. ~~Abdullah~~ 26. ~~Abdullah~~ 27. ~~Abdullah~~ 28. ~~Abdullah~~ 29. ~~Abdullah~~ 30. ~~Abdullah~~ 31. ~~Abdullah~~ 32. ~~Abdullah~~ 33. ~~Abdullah~~ 34. ~~Abdullah~~ 35. ~~Abdullah~~ 36. ~~Abdullah~~ 37. ~~Abdullah~~ 38. ~~Abdullah~~ 39. ~~Abdullah~~ 40. ~~Abdullah~~ 41. ~~Abdullah~~ 42. ~~Abdullah~~ 43. ~~Abdullah~~ 44. ~~Abdullah~~ 45. ~~Abdullah~~ 46. ~~Abdullah~~ 47. ~~Abdullah~~ 48. ~~Abdullah~~ 49. ~~Abdullah~~ 50. ~~Abdullah~~ 51. ~~Abdullah~~ 52. ~~Abdullah~~ 53. ~~Abdullah~~ 54. ~~Abdullah~~ 55. ~~Abdullah~~ 56. ~~Abdullah~~ 57. ~~Abdullah~~ 58. ~~Abdullah~~ 59. ~~Abdullah~~ 60. ~~Abdullah~~ 61. ~~Abdullah~~ 62. ~~Abdullah~~ 63. ~~Abdullah~~ 64. ~~Abdullah~~ 65. ~~Abdullah~~ 66. ~~Abdullah~~ 67. ~~Abdullah~~ 68. ~~Abdullah~~ 69. ~~Abdullah~~ 70. ~~Abdullah~~ 71. ~~Abdullah~~ 72. ~~Abdullah~~ 73. ~~Abdullah~~ 74. ~~Abdullah~~ 75. ~~Abdullah~~ 76. ~~Abdullah~~ 77. ~~Abdullah~~ 78. ~~Abdullah~~ 79. ~~Abdullah~~ 80. ~~Abdullah~~ 81. ~~Abdullah~~ 82. ~~Abdullah~~ 83. ~~Abdullah~~ 84. ~~Abdullah~~ 85. ~~Abdullah~~ 86. ~~Abdullah~~ 87. ~~Abdullah~~ 88. ~~Abdullah~~ 89. ~~Abdullah~~ 90. ~~Abdullah~~ 91. ~~Abdullah~~ 92. ~~Abdullah~~ 93. ~~Abdullah~~ 94. ~~Abdullah~~ 95. ~~Abdullah~~ 96. ~~Abdullah~~ 97. ~~Abdullah~~ 98. ~~Abdullah~~ 99. ~~Abdullah~~ 100. ~~Abdullah~~ 101. ~~Abdullah~~ 102. ~~Abdullah~~ 103. ~~Abdullah~~ 104. ~~Abdullah~~ 105. ~~Abdullah~~ 106. ~~Abdullah~~ 107. ~~Abdullah~~ 108. ~~Abdullah~~ 109. ~~Abdullah~~ 110. ~~Abdullah~~ 111. ~~Abdullah~~ 112. ~~Abdullah~~ 113. ~~Abdullah~~ 114. ~~Abdullah~~ 115. ~~Abdullah~~ 116. ~~Abdullah~~ 117. ~~Abdullah~~ 118. ~~Abdullah~~ 119. ~~Abdullah~~ 120. ~~Abdullah~~ 121. ~~Abdullah~~ 122. ~~Abdullah~~ 123. ~~Abdullah~~ 124. ~~Abdullah~~ 125. ~~Abdullah~~ 126. ~~Abdullah~~ 127. ~~Abdullah~~ 128. ~~Abdullah~~ 129. ~~Abdullah~~ 130. ~~Abdullah~~ 131. ~~Abdullah~~ 132. ~~Abdullah~~ 133. ~~Abdullah~~ 134. ~~Abdullah~~ 135. ~~Abdullah~~ 136. ~~Abdullah~~ 137. ~~Abdullah~~ 138. ~~Abdullah~~ 139. ~~Abdullah~~ 140. ~~Abdullah~~ 141. ~~Abdullah~~ 142. ~~Abdullah~~ 143. ~~Abdullah~~ 144. ~~Abdullah~~ 145. ~~Abdullah~~ 146. ~~Abdullah~~ 147. ~~Abdullah~~ 148. ~~Abdullah~~ 149. ~~Abdullah~~ 150. ~~Abdullah~~ 151. ~~Abdullah~~ 152. ~~Abdullah~~ 153. ~~Abdullah~~ 154. ~~Abdullah~~ 155. ~~Abdullah~~ 156. ~~Abdullah~~ 157. ~~Abdullah~~ 158. ~~Abdullah~~ 159. ~~Abdullah~~ 160. ~~Abdullah~~ 161. ~~Abdullah~~ 162. ~~Abdullah~~ 163. ~~Abdullah~~ 164. ~~Abdullah~~ 165. ~~Abdullah~~ 166. ~~Abdullah~~ 167. ~~Abdullah~~ 168. ~~Abdullah~~ 169. ~~Abdullah~~ 170. ~~Abdullah~~ 171. ~~Abdullah~~ 172. ~~Abdullah~~ 173. ~~Abdullah~~ 174. ~~Abdullah~~ 175. ~~Abdullah~~ 176. ~~Abdullah~~ 177. ~~Abdullah~~ 178. ~~Abdullah~~ 179. ~~Abdullah~~ 180. ~~Abdullah~~ 181. ~~Abdullah~~ 182. ~~Abdullah~~ 183. ~~Abdullah~~ 184. ~~Abdullah~~ 185. ~~Abdullah~~ 186. ~~Abdullah~~ 187. ~~Abdullah~~ 188. ~~Abdullah~~ 189. ~~Abdullah~~ 190. ~~Abdullah~~ 191. ~~Abdullah~~ 192. ~~Abdullah~~ 193. ~~Abdullah~~ 194. ~~Abdullah~~ 195. ~~Abdullah~~ 196. ~~Abdullah~~ 197. ~~Abdullah~~ 198. ~~Abdullah~~ 199. ~~Abdullah~~ 200. ~~Abdullah~~ 201. ~~Abdullah~~ 202. ~~Abdullah~~ 203. ~~Abdullah~~ 204. ~~Abdullah~~ 205. ~~Abdullah~~ 206. ~~Abdullah~~ 207. ~~Abdullah~~ 208. ~~Abdullah~~ 209. ~~Abdullah~~ 210. ~~Abdullah~~ 211. ~~Abdullah~~ 212. ~~Abdullah~~ 213. ~~Abdullah~~ 214. ~~Abdullah~~ 215. ~~Abdullah~~ 216. ~~Abdullah~~ 217. ~~Abdullah~~ 218. ~~Abdullah~~ 219. ~~Abdullah~~ 220. ~~Abdullah~~ 221. ~~Abdullah~~ 222. ~~Abdullah~~ 223. ~~Abdullah~~ 224. ~~Abdullah~~ 225. ~~Abdullah~~ 226. ~~Abdullah~~ 227. ~~Abdullah~~ 228. ~~Abdullah~~ 229. ~~Abdullah~~ 230. ~~Abdullah~~ 231. ~~Abdullah~~ 232. ~~Abdullah~~ 233. ~~Abdullah~~ 234. ~~Abdullah~~ 235. ~~Abdullah~~ 236. ~~Abdullah~~ 237. ~~Abdullah~~ 238. ~~Abdullah~~ 239. ~~Abdullah~~ 240. ~~Abdullah~~ 241. ~~Abdullah~~ 242. ~~Abdullah~~ 243. ~~Abdullah~~ 244. ~~Abdullah~~ 245. ~~Abdullah~~ 246. ~~Abdullah~~ 247. ~~Abdullah~~ 248. ~~Abdullah~~ 249. ~~Abdullah~~ 250. ~~Abdullah~~ 251. ~~Abdullah~~ 252. ~~Abdullah~~ 253. ~~Abdullah~~ 254. ~~Abdullah~~ 255. ~~Abdullah~~ 256. ~~Abdullah~~ 257. ~~Abdullah~~ 258. ~~Abdullah~~ 259. ~~Abdullah~~ 260. ~~Abdullah~~ 261. ~~Abdullah~~ 262. ~~Abdullah~~ 263. ~~Abdullah~~ 264. ~~Abdullah~~ 265. ~~Abdullah~~ 266. ~~Abdullah~~ 267. ~~Abdullah~~ 268. ~~Abdullah~~ 269. ~~Abdullah~~ 270. ~~Abdullah~~ 271. ~~Abdullah~~ 272. ~~Abdullah~~ 273. ~~Abdullah~~ 274. ~~Abdullah~~ 275. ~~Abdullah~~ 276. ~~Abdullah~~ 277. ~~Abdullah~~ 278. ~~Abdullah~~ 279. ~~Abdullah~~ 280. ~~Abdullah~~ 281. ~~Abdullah~~ 282. ~~Abdullah~~ 283. ~~Abdullah~~ 284. ~~Abdullah~~ 285. ~~Abdullah~~ 286. ~~Abdullah~~ 287. ~~Abdullah~~ 288. ~~Abdullah~~ 289. ~~Abdullah~~ 290. ~~Abdullah~~ 291. ~~Abdullah~~ 292. ~~Abdullah~~ 293. ~~Abdullah~~ 294. ~~Abdullah~~ 295. ~~Abdullah~~ 296. ~~Abdullah~~ 297. ~~Abdullah~~ 298. ~~Abdullah~~ 299. ~~Abdullah~~ 300. ~~Abdullah~~ 301. ~~Abdullah~~ 302. ~~Abdullah~~ 303. ~~Abdullah~~ 304. ~~Abdullah~~ 305. ~~Abdullah~~ 306. ~~Abdullah~~ 307. ~~Abdullah~~ 308. ~~Abdullah~~ 309. ~~Abdullah~~ 310. ~~Abdullah~~ 311. ~~Abdullah~~ 312. ~~Abdullah~~ 313. ~~Abdullah~~ 314. ~~Abdullah~~ 315. ~~Abdullah~~ 316. ~~Abdullah~~ 317. ~~Abdullah~~ 318. ~~Abdullah~~ 319. ~~Abdullah~~ 320. ~~Abdullah~~ 321. ~~Abdullah~~ 322. ~~Abdullah~~ 323. ~~Abdullah~~ 324. ~~Abdullah~~ 325. ~~Abdullah~~ 326. ~~Abdullah~~ 327. ~~Abdullah~~ 328. ~~Abdullah~~ 329. ~~Abdullah~~ 330. ~~Abdullah~~ 331. ~~Abdullah~~ 332. ~~Abdullah~~ 333. ~~Abdullah~~ 334. ~~Abdullah~~ 335. ~~Abdullah~~ 336. ~~Abdullah~~ 337. ~~Abdullah~~ 338. ~~Abdullah~~ 339. ~~Abdullah~~ 340. ~~Abdullah~~ 341. ~~Abdullah~~ 342. ~~Abdullah~~ 343. ~~Abdullah~~ 344. ~~Abdullah~~ 345. ~~Abdullah~~ 346. ~~Abdullah~~ 347. ~~Abdullah~~ 348. ~~Abdullah~~ 349. ~~Abdullah~~ 350. ~~Abdullah~~ 351. ~~Abdullah~~ 352. ~~Abdullah~~ 353. ~~Abdullah~~ 354. ~~Abdullah~~ 355. ~~Abdullah~~ 356. ~~Abdullah~~ 357. ~~Abdullah~~ 358. ~~Abdullah~~ 359. ~~Abdullah~~ 360. ~~Abdullah~~ 361. ~~Abdullah~~ 362. ~~Abdullah~~ 363. ~~Abdullah~~ 364. ~~Abdullah~~ 365. ~~Abdullah~~ 366. ~~Abdullah~~ 367. ~~Abdullah~~ 368. ~~Abdullah~~ 369. ~~Abdullah~~ 370. ~~Abdullah~~ 371. ~~Abdullah~~ 372. ~~Abdullah~~ 373. ~~Abdullah~~ 374. ~~Abdullah~~ 375. ~~Abdullah~~ 376. ~~Abdullah~~ 377. ~~Abdullah~~ 378. ~~Abdullah~~ 379. ~~Abdullah~~ 380. ~~Abdullah~~ 381. ~~Abdullah~~ 382. ~~Abdullah~~ 383. ~~Abdullah~~ 384. ~~Abdullah~~ 385. ~~Abdullah~~ 386. ~~Abdullah~~ 387. ~~Abdullah~~ 388. ~~Abdullah~~ 389. ~~Abdullah~~ 390. ~~Abdullah~~ 391. ~~Abdullah~~ 392. ~~Abdullah~~ 393. ~~Abdullah~~ 394. ~~Abdullah~~ 395. ~~Abdullah~~ 396. ~~Abdullah~~ 397. ~~Abdullah~~ 398. ~~Abdullah~~ 399. ~~Abdullah~~ 400. ~~Abdullah~~ 401. ~~Abdullah~~ 402. ~~Abdullah~~ 403. ~~Abdullah~~ 404. ~~Abdullah~~ 405. ~~Abdullah~~ 406. ~~Abdullah~~ 407. ~~Abdullah~~ 408. ~~Abdullah~~ 409. ~~Abdullah~~ 410. ~~Abdullah~~ 411. ~~Abdullah~~ 412. ~~Abdullah~~ 413. ~~Abdullah~~ 414. ~~Abdullah~~ 415. ~~Abdullah~~ 416. ~~Abdullah~~ 417. ~~Abdullah~~ 418. ~~Abdullah~~ 419. ~~Abdullah~~ 420. ~~Abdullah~~ 421. ~~Abdullah~~ 422. ~~Abdullah~~ 423. ~~Abdullah~~ 424. ~~Abdullah~~ 425. ~~Abdullah~~ 426. ~~Abdullah~~ 427. ~~Abdullah~~ 428. ~~Abdullah~~ 429. ~~Abdullah~~ 430. ~~Abdullah~~ 431. ~~Abdullah~~ 432. ~~Abdullah~~ 433. ~~Abdullah~~ 434. ~~Abdullah~~ 435. ~~Abdullah~~ 436. ~~Abdullah~~ 437. ~~Abdullah~~ 438. ~~Abdullah~~ 439. ~~Abdullah~~ 440. ~~Abdullah~~ 441. ~~Abdullah~~ 442. ~~Abdullah~~ 443. ~~Abdullah~~ 444. ~~Abdullah~~ 445. ~~Abdullah~~ 446. ~~Abdullah~~ 447. ~~Abdullah~~ 448. ~~Abdullah~~ 449. ~~Abdullah~~ 450. ~~Abdullah~~ 451. ~~Abdullah~~ 452. ~~Abdullah~~ 453. ~~Abdullah~~ 454. ~~Abdullah~~ 455. ~~Abdullah~~ 456. ~~Abdullah~~ 457. ~~Abdullah~~ 458. ~~Abdullah~~ 459. ~~Abdullah~~ 460. ~~Abdullah~~ 461. ~~Abdullah~~ 462. ~~Abdullah~~ 463. ~~Abdullah~~ 464. ~~Abdullah~~ 465. ~~Abdullah~~ 466. ~~Abdullah~~ 467. ~~Abdullah~~ 468. ~~Abdullah~~ 469. ~~Abdullah~~ 470. ~~Abdullah~~ 471. ~~Abdullah~~ 472. ~~Abdullah~~ 473. ~~Abdullah~~ 474. ~~Abdullah~~ 475. ~~Abdullah~~ 476. ~~Abdullah~~ 477. ~~Abdullah~~ 478. ~~Abdullah~~ 479. ~~Abdullah~~ 480. ~~Abdullah~~ 481. ~~Abdullah~~ 482. ~~Abdullah~~ 483. ~~Abdullah~~ 484. ~~Abdullah~~ 485. ~~Abdullah~~ 486. ~~Abdullah~~ 487. ~~Abdullah~~ 488. ~~Abdullah~~ 489. ~~Abdullah~~ 490. ~~Abdullah~~ 491. ~~Abdullah~~ 492. ~~Abdullah~~ 493. ~~Abdullah~~ 494. ~~Abdullah~~ 495. ~~Abdullah~~ 496. ~~Abdullah~~ 497. ~~Abdullah~~ 498. ~~Abdullah~~ 499. ~~Abdullah~~ 500. ~~Abdullah~~ 501. ~~Abdullah~~ 502. ~~Abdullah~~ 503. ~~Abdullah~~ 504. ~~Abdullah~~ 505. ~~Abdullah~~ 506. ~~Abdullah~~ 507. ~~Abdullah~~ 508. ~~Abdullah~~ 509. ~~Abdullah~~ 510. ~~Abdullah~~ 511. ~~Abdullah~~ 512. ~~Abdullah~~ 513. ~~Abdullah~~ 514. ~~Abdullah~~ 515. ~~Abdullah~~ 516. ~~Abdullah~~ 517. ~~Abdullah~~ 518. ~~Abdullah~~ 519. ~~Abdullah~~ 520. ~~Abdullah~~ 521. ~~Abdullah~~ 522. ~~Abdullah~~ 523. ~~Abdullah~~ 524. ~~Abdullah~~ 525. ~~Abdullah~~ 526. ~~Abdullah~~ 527. ~~Abdullah~~ 528. ~~Abdullah~~ 529. ~~Abdullah~~ 530. ~~Abdullah~~ 531. ~~Abdullah~~ 532. ~~Abdullah~~ 533. ~~Abdullah~~ 534. ~~Abdullah~~ 535. ~~Abdullah~~ 536. ~~Abdullah~~ 537. ~~Abdullah~~ 538. ~~Abdullah~~ 539. ~~Abdullah~~ 540. ~~Abdullah~~ 541. ~~Abdullah~~ 542. ~~Abdullah~~ 543. ~~Abdullah~~ 544. ~~Abdullah~~ 545. ~~Abdullah~~ 546. ~~Abdullah~~ 547. ~~Abdullah~~ 548. ~~Abdullah~~ 549. ~~Abdullah~~ 550. ~~Abdullah~~ 551. ~~Abdullah~~ 552. ~~Abdullah~~ 553. ~~Abdullah~~ 554. ~~Abdullah~~ 555. ~~Abdullah~~ 556. ~~Abdullah~~ 557. ~~Abdullah~~ 558. ~~Abdullah~~ 559. ~~Abdullah~~ 560. ~~Abdullah~~ 561. ~~Abdullah~~ 562. ~~Abdullah~~ 563. ~~Abdullah~~ 564. ~~Abdullah~~ 565. ~~Abdullah~~ 566. ~~Abdullah~~ 567. ~~Abdullah~~ 568. ~~Abdullah~~ 569. ~~Abdullah~~ 570. ~~Abdullah~~ 571. ~~Abdullah~~ 572. ~~Abdullah~~ 573. ~~Abdullah~~ 574. ~~Abdullah~~ 575. ~~Abdullah~~ 576. ~~Abdullah~~ 577. ~~Abdullah~~ 578. ~~Abdullah~~ 579. ~~Abdullah~~ 580. ~~Abdullah~~ 581. ~~Abdullah~~ 582. ~~Abdullah~~ 583. ~~Abdullah~~ 584. ~~Abdullah~~ 585. ~~Abdullah~~ 586. ~~Abdullah~~ 587. ~~Abdullah~~ 588. ~~Abdullah~~ 589. ~~Abdullah~~ 590. ~~Abdullah~~ 591. ~~Abdullah~~ 592. ~~Abdullah~~ 593. ~~Abdullah~~ 594. ~~Abdullah~~ 595. ~~Abdullah~~ 596. ~~Abdullah~~ 597. ~~Abdullah~~ 598. ~~Abdullah~~ 599. ~~Abdullah~~ 600. ~~Abdullah~~ 601. ~~Abdullah~~ 602. ~~Abdullah~~ 603. ~~Abdullah~~ 604. ~~Abdullah~~ 605. ~~Abdullah~~ 606. ~~Abdullah~~ 607. ~~Abdullah~~ 608. ~~Abdullah~~ 609. ~~Abdullah~~ 610. ~~Abdullah~~ 611. ~~Abdullah~~ 612. ~~Abdullah~~ 613. ~~Abdullah~~ 614. ~~Abdullah~~ 615. ~~Abdullah~~ 616. ~~Abdullah~~ 617. ~~Abdullah~~ 618. ~~Abdullah~~ 619. ~~Abdullah~~ 620. ~~Abdullah~~ 621. ~~Abdullah~~ 622. ~~Abdullah~~ 623. ~~Abdullah~~ 624. ~~Abdullah~~ 625. ~~Abdullah~~ 626. ~~Abdullah~~ 627. ~~Abdullah~~ 628. ~~Abdullah~~ 629. ~~Abdullah~~ 630. ~~Abdullah~~ 631. ~~Abdullah~~ 632. ~~Abdullah~~ 633. ~~Abdullah~~ 634. ~~Abdullah~~ 635. ~~Abdullah~~ 636. ~~Abdullah~~ 637. ~~Abdullah~~ 638. ~~Abdullah~~ 639. ~~Abdullah~~ 640. ~~Abdullah~~ 641. ~~Abdullah~~ 642. ~~Abdullah~~ 643. ~~Abdullah~~ 644. ~~Abdullah~~ 645. ~~Abdullah~~ 646. ~~Abdullah~~ 647. ~~Abdullah~~ 648. ~~Abdullah~~ 649. ~~Abdullah~~ 650. ~~Abdullah~~ 651. ~~Abdullah~~ 652. ~~Abdullah~~ 653. ~~Abdullah~~ 654. ~~Abdullah~~ 655. ~~Abdullah~~ 656. ~~Abdullah~~ 657. ~~Abdullah~~ 658. ~~Abdullah~~ 659. ~~Abdullah~~ 660. ~~Abdullah~~ 661. ~~Abdullah~~ 662. ~~Abdullah~~ 663. ~~Abdullah~~ 664. ~~Abdullah~~ 665. ~~Abdullah~~ 666. ~~Abdullah~~ 667. ~~Abdullah~~ 668. ~~Abdullah~~ 669. ~~Abdullah~~ 670. ~~Abdullah~~ 671. ~~Abdullah~~ 672. ~~Abdullah~~ 673. ~~Abdullah~~ 674. ~~Abdullah~~ 675. ~~Abdullah~~ 676. ~~Abdullah~~ 677. ~~Abdullah~~ 678. ~~Abdullah~~ 679. ~~Abdullah~~ 680. ~~Abdullah~~ 681. ~~Abdullah~~ 682. ~~Abdullah~~ 683. ~~Abdullah~~ 684. ~~Abdullah~~ 685. ~~Abdullah~~ 686. ~~Abdullah~~ 687. ~~Abdullah~~ 688. ~~Abdullah~~ 689. ~~Abdullah</~~

UNIT - IV:

Nuclear Power Station: Nuclear fuel – breeding and fertile materials – Nuclear reactor – reactor operation. **Types of Reactors:** Pressurized water reactor, Boiling water reactor, sodium-graphite reactor, fast Breeder Reactor, Homogeneous Reactor, Gas cooled Reactor, Radiation hazards and shielding – radioactive waste disposal.

UNIT - V:

Power Plant Economics and Environmental Considerations: Capital cost, investment of fixed charges, operating costs, general arrangement of power distribution, Load curves, load duration curve. Definitions of connected load, Maximum demand, demand factor, average load, load factor, diversity factor – related exercises. Effluents from power plants and Impact on environment – pollutants and pollution standards – Methods of Pollution control.

TEXT BOOKS:

1. Power Plant Engineering/ P. K. Nag / Mc Graw Hill
2. Power Plant Engineering / Hegde / Pearson.

REFERENCES BOOKS:

1. Power Plant Engineering / Gupta / PHI
2. Power Plant Engineering / A K Raja / New age

1. 2. ~~3. Hegde~~ 3. Hegde

4. 5. ~~6. Hegde~~ 6. Hegde

7. 8. ~~9. Hegde~~ 9. Hegde

AUTOMOBILE ENGINEERING (PROFESSIONAL ELECTIVE – III)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Course Objectives: The Objective of this course is to provide the student to

- Elaborate the Systems of Automobile, Components of Engine, fuel & Lubrication system and its requirements
- Explain the significance and features of Cooling, Ignition and Electrical Systems
- Illustrate the working of transmission system and Suspension systems and its components
- Elaborate the function of each accessory of steering and braking system and their role for effective performance of automobile
- Discuss the particulates of combustion in CI and SI engines, reasons for formation of particulates and methods adopted to control the pollution

Course Outcomes: At the end of the course, the student will be able to

- Illustrate the function of each and every system of an automobiles including fuel system and injection approaches
- Explain the Cooling, ignition and electrical system of the Automobile
- Describe each component of transmission system of an automobile viz clutch, gear box, propeller shaft and differential and suspension system and the effect of the same on tyre performance and other components of an automobile
- Analyze the geometry of the steering mechanism and braking system
- Demonstrate about emission standards, emission control techniques and electrical systems.

Student can identify thrust areas for carrying their dissertation in future.

UNIT – I:

Introduction: Layout of automobile – introduction chassis and body components. Types of Automobile engines. – Power unit – Introduction to engine lubrication – engine servicing

Fuel System: S.I. Engine: Fuel supply systems, Mechanical and electrical fuel pump – filters – carburetor – types – air filters – petrol injection. Introduction to MPFI and GDI Systems.

C.I. Engines: Requirements of diesel injection systems, types of injection systems, DI Systems IDI systems. Fuel pump, nozzle, spray formation, injection timing, testing of fuel pumps. Introduction to CRDI and TDI Systems.

UNIT – II:

Cooling System: Cooling Requirements, Air Cooling, Liquid Cooling, Thermo, water and Forced Circulation System – Radiators – Types – Cooling Fan - water pump, thermostat, evaporative cooling – pressure sealed cooling – antifreeze solutions.

Ignition System: Function of an ignition system, battery ignition system, constructional features of storage, battery, auto transformer, contact breaker points, condenser, and spark plug – Magneto coil ignition system, electronic ignition system using contact breaker, electronic ignition using contact triggers – spark advance and retard mechanism.

Electrical System: Charging circuit, generator, current – voltage regulator – starting system, bendix drive mechanism solenoid switch, lighting systems, Horn, wiper, fuel gauge – oil pressure gauge, engine temperature indicator etc.

UNIT – III:

Transmission System: Clutches, principle, types, cone clutch, single plate clutch, multi plate clutch, magnetic and centrifugal clutches, fluid fly wheel – gear boxes, types, sliding mesh, constant mesh, synchro mesh gear boxes, epicyclic gear box, over drive torque converter. Propeller shaft – Hotch – Kiss drive, Torque tube drive, universal joint, differential rear axles – types – wheels and tyres.

Suspension System: Objects of suspension systems – rigid axle suspension system, torsion bar, shock absorber, independent suspension system.

UNIT – IV:

Braking System: Mechanical brake system, Hydraulic brake system, Master cylinder, wheel cylinder tandem master cylinder Requirement of brake fluid, Pneumatic and vacuum brakes.

Steering System: Steering geometry – camber, castor, king pin rake, combined angle toein, center point steering. Types of steering mechanism – Ackerman steering mechanism, Davis steering mechanism, steering gears – types, steering linkages.

UNIT – V:

Emissions from Automobiles – Pollution standards National and international – Pollution Control – Techniques – Multipoint fuel injection for SI Engines. Common rail diesel injection Energy alternatives – Solar, Photo-voltaic, hydrogen, Biomass, alcohols, LPG, CNG, liquid Fuels, and gaseous fuels, Hydrogen as a fuel for IC Engines. - Their merits and demerits. Standard Vehicle maintenance practice.

TEXT BOOKS:

1. Automobile Engineering / William H Crouse
2. A Text Book Automobile Engineering–Manzoor, Nawazish Mehdi & Yosuf Ali, Frontline Publications.

REFERENCE BOOKS:

1. A Text Book of Automobile Engineering by R K Rajput. Laxmi Publications.
2. Automotive Mechanics / Heitner
3. Automotive Engineering / Newton Steeds & Garrett
4. Automotive Engines / Srinivasan.
5. A Text Book of Automobile Engineering By Khalil U Siddiqui New Age International

1. C 2. Shaf 3. Rubayat 4. Abhilekha 6. U2
7. HG

NON-CONVENTIONAL ENERGY SOURCES (PROFESSIONAL ELECTIVE – III)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Course Objectives: The Objective of this course is to

- Introduce the need of the non-conventional energy sources.
- Differentiate various solar collectors
- Identify the energy resources utilization systems
- Recognize the source and potential of wind energy and understand the classifications of wind mills.
- Summarize the principles of bio-conversion, ocean energy and geo thermal energy.

Course Outcomes: At the end of the course students will be able to

- Choose the appropriate renewable energy as an alternate for conventional power in any application.
- Understand principles of various solar collectors and use them in different applications
- Inculcate the knowledge on usage of alternate energy sources in I.C Engines
- Know various energy conversion techniques
- Analyze large scale demand of heat energy for meeting day to day domestic, institutional and industrial requirements can be met by utilizing solar thermal systems, biogas, PV cells, wind energy, Geothermal, MHD etc.

UNIT-I:

Principles of Solar Radiation, Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power - Physics of the sun, the solar constant, extra-terrestrial and terrestrial solar radiation, Solar radiation on titled surface, Instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT-II:

Solar Energy Collection Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors. Solar Energy Storage and Applications: Different methods, sensible, latent heat and stratified storage, solar ponds. Solar applications - solar heating/ cooling techniques, solar distillation and drying, Photovoltaic energy conversion.

UNIT-III:

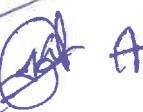
Wind Energy Sources and potentials, horizontal and vertical axis windmills, performance characteristics. Bio-Mass: Principles of Bio-Conversion, Anaerobic /aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C. Engine operation, and economic aspects.

UNIT-IV: Geothermal Energy Resources, types of wells, methods of harnessing the energy, potential in India. OTEC: Principles, utilization, setting of OTEC plants, thermodynamic cycles.

1. Cr 2. 2002 3. Abhijit Shetty 6. Abhijit Shetty 7. MG

Tidal and Wave Energy: Potential and conversion techniques, mini-hydel power plants, their economics.

UNIT-V:



Direct Energy Conversion Need for DEC, Carnot cycle, limitations, Principles of DEC. Thermo-electric generators, Seebeck, Peltier and Joule Thompson effects, figure of merit, materials, applications, MHD generators, principles, dissociation and ionization, hall effect, magnetic flux, MHD accelerator, MHD engine, power generation systems, electron gas dynamic conversion, economic aspects. Fuel cells, principle, faraday's laws, thermodynamic aspects, selection of fuels and operating conditions.

TEXT BOOKS:

1. Renewable Energy Sources/Twidell & Weir /Taylor and Francis / 2nd Special Indian Edition.
2. Non- conventional Energy Sources / G.D. Rai / Dhanpat Rai and Sons.

REFERENCE BOOKS:

1. Energy Resources Utilization and Technologies/Anjaneyulu & Francis/BS Publications/2012.
2. Principles of Solar Energy / Frank Krieth & John F Kreider / Hemisphere Publications.
3. Non-Conventional Energy / Ashok V Desai / Wiley Eastern.
4. Non-Conventional Energy Systems / K Mittal / Wheeler.
5. Renewable Energy Technologies /Ramesh & Kumar /Narosa.
6. Renewable Energy Resources /Tiwari and Ghosal /Narosa.

1. 2. 3. 4. 5. 6.
2.

SOLAR ENERGY TECHNOLOGY (PROFESSIONAL ELECTIVE – III)

L	T	P	C
3	0	0	3

B.Tech. IV Year, I Sem.

Course Objectives

- Focus on solar energy utilization
- Explain the concepts of solar water heating and its layout
- Concepts of thermal energy storage
- Discuss the energy conversion technologies
- Concentrate the economic aspects of Solar Energy

Course Outcomes

- Explain the solar energy potential and construction details of collector with performance analysis
- Analyse the concepts of solar water heating technologies and its parameters
- Narrate the methods of solar energy storage and its working
- Infer the direct energy conversion and conversion efficiencies calculations
- Discuss the Principles of Economic Analysis and optimization with respect solar energy

UNIT- I:

Introduction – Solar energy option, specialty and potential – Sun – Earth – Solar radiation, beam and diffuse – measurement – estimation of average solar radiation on horizontal and tilted surfaces – problems – applications. Capturing solar radiation – physical principles of collection – types – liquid flat plate collectors – construction details – performance analysis – concentrating collection – flat plate collectors with plane reflectors – cylindrical parabolic collectors – Orientation and tracking – Performance Analysis.

UNIT- II:

Design of Solar Water Heating System and Layout: Power generation – solar central receiver system – Heliostats and Receiver – Heat transport system – solar distributed receiver system – Power cycles, working fluids and prime movers, concentration ratio.

UNIT- III:

Thermal Energy Storage: Introduction – Need for – Methods of sensible heat storage using solids and liquids – Packed bed storage – Latent heat storage – working principle – construction – application and limitations. Other solar devices – stills, air heaters, dryers, Solar Ponds & Solar Refrigeration, active and passive heating systems.

UNIT- IV:

Direct Energy Conversion: solid-state principles – semiconductors – solar cells – performance – modular construction – applications. conversion efficiencies calculations.

UNIT- V:

Economics: Principles of Economic Analysis – Discounted cash flow – Solar system – life cycle costs – cost benefit analysis and optimization – cost-based analysis of water heating and photo voltaic applications.

1 6 2 *200* 3 *Prashanth* 4 *Ashish* 5 *6.0* 7 *H M G*

TEXT BOOKS:

1. Principles of solar engineering/ Kreith and Kerider/Taylor and Franscis/2nd Edition.
2. Solar energy thermal processes/ Duffie and Beckman/John Wiley & Sons

REFERENCE BOOKS:

1. Solar energy: Principles of Thermal Collection and Storage/ Sukhatme/TMH/2nd edition
2. Solar energy/ Garg/TMH
3. Solar energy/ Magal/Mc Graw Hill
4. Solar Thermal Engineering Systems / Tiwari and Suneja/Narosa
5. Power plant Technology/ El Wakil/TMH.

1. 1. Kreith
2. 2. Duffie
3. 3. Suneja

4. 4. Magal

5. 5. El Wakil

6. 6. Narosa

RE-ENGINEERING (PROFESSIONAL ELECTIVE – IV)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Course objective: The objective is to understand the terminologies related to forward engineering and reverse engineering and to identify the process of designing, manufacturing, assembling, and maintaining products and systems.

Course Outcomes: At the end of the course, the student will be able to:

- Familiarize with the process of reverse engineering and its applications.
- Understand the methodologies and techniques for Reverse Engineering.
- Learn various data collection techniques and the data processing chain.
- Select a proper system to generate geometric representations of physical objects.
- Integrate Reverse Engineering and Rapid Prototyping.

UNIT - I

Introduction to Reverse Engineering: Reverse Engineering –The Generic Process

Reverse Engineering in Automotive, Aerospace, Medical sectors: Legal Aspects of Reverse Engineering: Copyright Law, Reverse Engineering, Recent Case Law, Barriers to Adopting Reverse Engineering. A discussion on a few benchmark case studies

UNIT - II

Methodologies and Techniques for Reverse Engineering: The Potential for Automation with 3-D Laser Scanners, What Is Not Reverse Engineering, What is Computer-aided (Forward) Engineering, What Is Computer-aided Reverse Engineering, Computer Vision and Reverse Engineering, Structured- light Range Imaging, Scanner Pipeline

UNIT - III

Reverse Engineering–Hardware and Software: Contact Methods Noncontact Methods, Destructive Method. Reverse Engineering Software Classification, Fundamental Reverse Engineering Operations, Reverse Engineering Phases

UNIT - IV

Selecting a Reverse Engineering System: The Selection Process, Some Additional Complexities, Point Capture Devices, Triangulation Approaches, “Time-of-flight” or Ranging Systems, Structured-light and Stereoscopic Imaging Systems, issues with Light-based Approaches, Tracking Systems, Internal Measurement Systems, X-ray Tomography, Destructive Systems, Some Comments on Accuracy, Positioning the Probe, Post processing the Captured Data, Handling Data Points, Curve and Surface Creation, Inspection Applications, Manufacturing Approaches.

UNIT - V:

Integration between Reverse Engineering and Rapid Prototyping: Modeling Cloud Data in Reverse Engineering, Data Processing for Rapid Prototyping, Integration of RE and RP for Layer-based Model Generation, Adaptive Slicing Approach for Cloud Data Modeling, Planar Polygon Curve Construction for a Layer, Determination of Adaptive Layer Thickness.

1. *Dr. S. Sankar* 2. *Mr. Ashish Patel* 3. *Mr. R. S. Raghavendra*

2. *H. G.*

TEXT BOOK:

1. Reverse Engineering: An Industrial Perspective by Vinesh Raja and Kiran J. Fernandes, Springer-Verlag London Limited 2008

REFERENCE BOOKS:

1. K. Otto and K. Wood, Product Design: Techniques in Reverse Engineering and New Product Development, Prentice Hall, 2001.
2. Anupam Saxena, Birendra Sahay, Computer Aided Engineering Design, Springer, 2005.
3. Ali K. Kamrani and Emad Abouel Nasr, Engineering Design and Rapid Prototyping, Springer, 2010.

1 Dr 2 ✓ 3 ✓ 4 ✓ 5 ✓ 6 ✓ 7 ✓ 8 ✓
J M G

COMPUTATIONAL FLUID DYNAMICS (PROFESSIONAL ELECTIVE – IV)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Pre-requisite: Heat Transfer and Fluid Mechanics

Course Objective: To apply the principles of Heat Transfer and Fluid Mechanics to formulate governing equations for physical problems and to solve those using different numerical techniques

Course Outcomes: At the end of the course, the student should be able to:

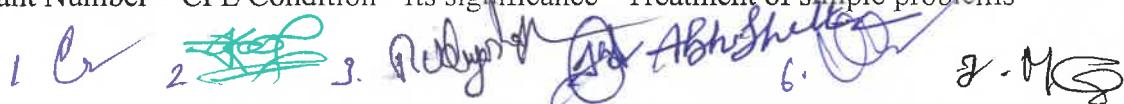
- Differentiate between different types of Partial Differential Equations and to know and understand appropriate numerical techniques.
- Solve the simple heat transfer and fluid flow problems using different numerical techniques, viz., FDM.
- Understand and to appreciate the need for validation of numerical solution.

UNIT - I:

Basic Aspects of the Governing Equations – Physical Boundary Conditions – Methods of solutions of Physical Problems – Need for Computational Fluid Dynamics – Different numerical/CFD techniques – FDM, FEM, FVM etc., - Main working principle - CFD as a research and design tool – Applications in various branches of Engineering

Mathematical behavior of Partial Differential Equations (Governing Equations): Classification of linear/ quasi linear PDE – Examples - Physical Processes: Wave Equations and Equations of Heat Transfer and Fluid Flow – Mathematical Behavior - General characteristics – Its significance in understanding the physical and numerical aspects of the PDE – One way and Two Way variables – Well posed problems – Initial and Boundary Conditions

Solution of Simultaneous Algebraic Equations: Direct Method – Gauss Elimination – LU Decomposition – Pivoting – Treatment of Banded Matrices – Thomas Algorithm


Iterative Method: Gauss Seidel and Jordan Methods - Stability Criterion

UNIT - II:

Finite Difference Method: Basic aspects of Discretization – Finite Difference formulae for first order and second order terms – Solution of physical problems with Elliptic type of Governing Equations for different boundary conditions - Numerical treatment of 1D and 2D problems in heat conduction, beams etc., - Solutions –Treatment of Curvilinear coordinates – Singularities – Finite Difference Discretization – Solution of 1D heat conduction problems in Heat conduction in curve linear coordinates

UNIT - III:

FDM: Solution of physical problems with Parabolic type of Governing Equations – Initial Condition – Explicit, implicit and semi implicit methods – Types of errors – Stability and Consistency – Von Neumann Stability criterion– Solution of simple physical problems in 1D and 2D – Transient Heat conduction problems- ADI scheme - Simple Hyperbolic type PDE - First order and Second order wave equations – Discretization using Explicit method - Stability criterion – Courant Number – CFL Condition - Its significance - Treatment of simple problems

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - IV:

Finite Difference Solution of Unsteady Inviscid Flows: Lax – Wendroff Technique – Disadvantages – MacCormack’s Technique

Fluid Flow Equations – Finite Difference Solutions of 2D Viscous Incompressible flow problems
– Vorticity and Stream Function Formulation – Finite Difference treatment of Lid Driven Cavity Problem -

Application to Cylindrical Coordinates with example of flow over infinitely long cylinder and sphere – Obtaining Elliptic Equations

UNIT - V:

Finite Difference Applications in Fluid flow problems: Fundamentals of fluid Flow modeling using Burger's Equation – Discretization using FTCS method with respect to Upwind Scheme and Transport Property – Upwind Scheme and Artificial Viscosity

Solutions of Navier Stokes Equations for Incompressible Fluid Flows: Staggered Grid – Marker and Cell (MAC) Formulation – Numerical Stability Considerations – Pressure correction method - SIMPLE Algorithm

TEXT BOOKS:

1. Computational Fluid Dynamics: The basics with applications/ John D Anderson/McGraw Hill Publications
2. Numerical Heat Transfer and Fluid Flow/ S.V. Patankar/ Mc Graw Hill

REFERENCE BOOKS:

1. Computational Fluid Flow and Heat Transfer / K Muralidharan and T Sudarajan/ Narosa Publishers.
2. Computational Methods for Fluid Dynamics / Firziger & Peric/ Springer

1. 2. 3. ~~4.~~ 5. Abayoh 6. Ashishka 6. 09
7. MG

TURBO MACHINERY (PROFESSIONAL ELECTIVE – IV)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Pre-requisites: Thermal Engineering, Heat Transfer

Course Objectives:

- To provide the knowledge of basic principles, governing equations and applications of turbo machinery.
- To explain construction and working principle and evaluate the performance characteristics of Turbo Machines

Course Outcomes: At the end of the course, student will be able to:

- Apply thermodynamics and kinematics principles to turbo machines
- Understand mechanisms behind working of Turbines, compressors.
- Understand the thermodynamic and flow analysis for turbines and compressors
- Analyze the performance of turbo machines.

UNIT – I:

Introduction to Turbomachinery: Classification of turbo-machines, second law of thermodynamics applied to turbine and compressors work, nozzle, diffuser work, fluid equation, continuity, Euler's, Bernoulli's, equation and its applications, expansion and compression process, reheat factor, preheat factor

UNIT – II:

Fundamental Concepts of Axial and Radial Machines: Euler's equation of energy transfer, vane congruent flow, influence of relative circulation, thickness of vanes, number of vanes on velocity triangles, slip factor, Stodola, Stanitz and Balje's slip factor, suction pressure and net positive suction head, phenomena of cavitation in pumps, concept of specific speed, shape number, axial, radial and mixed flow machines, similarity laws.

UNIT – III:

Gas Dynamics: Fundamental thermodynamic concepts, isentropic conditions, mach numbers, and area, Velocity relations, Dynamic Pressure, Normal shock relation for perfect gas. Supersonic flow, oblique shock waves. Normal shock recoveries, detached shocks, Aerofoil theory.

Centrifugal compressor: Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance

UNIT – IV:

Axial Flow Compressors: Flow Analysis, Work, and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance

Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades.

1 2 3. Rudrapratik Acharya 2 MG

UNIT – V:

Axial Flow Gas Turbines: Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Zweifels relation, Design cascade analysis, Soderberg, Hawthorne, Ainley, Correlations, Secondary flow, Free vortex blade, Blade angles for variable degree of reaction. Actuator

disc, Theory, Stress in blades, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design performance.

TEXT BOOKS:

1. Principles of Turbo Machines/DG Shepherd / Macmillan
2. Turbines, Pumps, Compressors/Yahya/ Mc Graw Hill

REFERENCE BOOKS:

1. A Treatise on Turbo machines / G. Gopal Krishnan and D. Prithviraj/ SciTech
2. Gas Turbine Theory/ Saravanamuttoo/ Pearson.
3. Turbo Machines/ A Valan Arasu/ Vikas Publishing House Pvt. Ltd.

1. 6
2. ~~1. 6~~ 3. ~~1. 6~~ 4. ~~1. 6~~ 5. ~~1. 6~~ 6. ~~1. 6~~
7. ~~1. 6~~

FLUID POWER SYSTEM (PROFESSIONAL ELECTIVE – IV)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Pre-requisites: Fluid Mechanics and Hydraulics Machinery

Course outcomes: At the end of the course, student will be able to:

- Understand the basic types of pumps and motors
- Analyse different types of valves
- Design and analysis of hydraulic circuits
- Visualize how a hydraulic/pneumatic circuit works to accomplish the function.
- Design an appropriate hydraulic or pneumatic circuit or combination circuit like electro-hydraulics, electro-pneumatics for a given application.

UNIT- I:

Introduction to oil hydraulics and pneumatics, their structure, advantages and limitations. ISO symbols, energy losses in hydraulic systems. Applications, Basic types and constructions of Hydraulic pumps and motors. Pump and motor analysis. Performance curves and parameters.

UNIT- II:

Hydraulic actuators, types and constructional details, lever systems, control elements – direction, pressure and flow control valves. Valve configurations, General valve analysis, valve lap, flow forces and lateral forces on spool valves. Series and parallel pressure compensation flow control valves. Flapper valve Analysis and Design.

UNIT- III:

Proportional control valves and servo valves. Nonlinearities in control systems (backlash, hysteresis, dead band and friction nonlinearities). Design and analysis of typical hydraulic circuits. Regenerative circuits, high low circuits, Synchronization circuits, and accumulator sizing.

UNIT- IV:

Intensifier circuits Meter-in, Meter-out and Bleed-off circuits; Fail Safe and Counter balancing circuits, accessories used in fluid power system, Filtration systems and maintenance of system. Components of pneumatic systems; Direction, flow and pressure control valves in pneumatic systems. Development of single and multiple actuator circuits. Valves for logic functions; Time delay valve; Exhaust and supply air throttling;

UNIT- V:

Examples of typical circuits using Displacement – Time and Travel-Step diagrams. Will-dependent control, Travel-dependent control and Time dependent control, combined control, Program Control, Electropneumatic control and air-hydraulic control, Ladder diagrams. Applications in Assembly, Feeding, Metal working, materials handling and plastics working.

TEXT BOOKS:

1. Fluid Power Control systems/ Pippenger, J.J., and R. M. Koff/ New York: McGraw Hill.
2. Fluid Power Systems: modeling, simulation and microcomputer control"/ John Watton/ Prentice Hall International.

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

REFERENCE BOOKS:

1. Fundamentals of Fluid Power Control. / John Watton/ 1st Ed. Cambridge University Press, 2009.
2. Fluid Power with applications"/ Anthony Esposito / Pearson Education.

1. 6 2. ~~keep~~ 3. ~~Abbas~~ 4. ~~Abbas~~ 5. ~~Abbas~~ 6. ~~Abbas~~
2. ~~Abbas~~

QUANTITATIVE ANALYSIS FOR BUSINESS DECISIONS (OPEN ELECTIVE – II)

B.Tech. IV Year, I Sem.

L	T	P	C
3	0	0	3

Course Objectives:

- To impart knowledge of basic tools of Operations research in solving the management problems using mathematical approaches for decision making.
- To teach the methods of solving Linear Programming Problems.
- To impart knowledge on assignment model and transportation problem.
- To impart knowledge on the significance of decision tree and Network analysis.
- To highlight the importance of Queuing Theory.

Course Outcomes: At the end of the course, students will be able to:

- Understand the origin and application of operations research.
- Learn about the Formulation of Linear Programming Problem for different areas.
- appreciate the significance of variations of assignment problem, methods for finding Initial feasible solution.
- Learn the aspects of Decision Theory and Network Analysis
- Gain insights of the theoretical principles and practical applications of different queuing models.

UNIT – I: Introduction to Operations Research: Nature and Scope of Operations Research: Origins of OR, Applications of OR in different Managerial Areas, Problem Solving and Decision-making, Quantitative and Qualitative Analysis. Defining a Model, Types of Models, Process for Developing an Operations Research Model, Practices, Opportunities and Shortcomings of using an OR Model.

UNIT – II: Linear Programming Method: Structure of LPP, Assumptions of LPP, Application Areas of LPP, Guidelines for Formulation of LPP, Formulation of LPP for Different Areas, Solving of LPP by Graphical Method: Extreme Point Method, Simplex Method, Converting Primal LPP to Dual LPP, Limitations of LPP.

UNIT – III: Assignment Model: Algorithm for Solving Assignment Model, Hungarians Method for Solving Assignment Problem, Variations of Assignment Problem: Multiple Optimal Solutions, Maximization Case in Assignment Problem, Unbalanced Assignment Problem, Travelling Salesman Problem, Simplex Method for Solving Assignment Problem.

Transportation Problem: Mathematical Model of Transportation Problem, Methods for Finding Initial Feasible Solution: Northwest Corner Method, Least Cost Method, Vogels Approximation Method, Test of Optimality by Modi Method, Unbalanced Supply and Demand, Degeneracy and its Resolution.

UNIT – IV: Decision Theory: Introduction, Ingredients of Decision Problems. Decision-making under Uncertainty, Cost of Uncertainty Under Risk, Under Perfect Information, Decision Tree, Construction of Decision Tree.

Network Analysis: Network Diagram, PERT, CPM, Critical Path Determination, Project Completion Time, Project Crashing.

1. ✓ 2. ~~✓~~ 3. ~~✓~~ Ashish Sabat 6/6 ✓ 2. MGS

UNIT – V: Queuing Theory: Queuing Structure and Basic Component of a Queuing Model, Distributions in Queuing Model, Different Queuing Models with FCFS, Queue Discipline, Single and Multiple Service Station with Finite and Infinite Population. Game Theory, Saddle Point, Value of the Game.

TEXT BOOKS:

1. Mik Wisniewski, Dr Farhad Shafti, Quantitative Analysis for Decision Makers, Pearson, 7e, 2019.
2. Miguel Ángel Canela, Inés Alegre, Alberto Ibarra, Quantitative Methods for Management: A Practical Approach, Springer International Publishing, 1e, 2019.

REFERENCE BOOKS:

1. James E. Sallis, Geir Gripsrud, Ulf Henning Olsson, Ragnhild Silkoset, Research Methods and Data Analysis for Business Decisions: A Primer Using SPSS, Springer International Publishing, 1e, 2021.
2. R. Pannerselvam, Operations Research, Prentice Hall International, 3e, 2015.
3. N.V.S. Raju, Operations Research: Theory and Practice, CRC Press, 2020.
4. R. Pannerselvam, Operations Research, Prentice Hall International, 3e, 2015
5. J.K. Sharma, Operations Research: Theory Dand applications, MacMillian, 5e, 2013

1. ✓ 2. ~~✓~~ 3. ~~✓~~ 4. ✓ 5. ✓ 6. ✓
7.

PRINCIPLES OF ENTREPRENEURSHIP

(OPEN ELECTIVE – II)

B.Tech. IV Year I Sem.

L	T	P	C
3	0	0	3

UNIT - I

Introduction to Entrepreneurship: Definition of Entrepreneur Entrepreneurial Traits. Entrepreneur vs Manager, creating and starting the venture: sources of new ideas, method of generating ideas, creative problem solving – writing business plan, evaluating business plans. Launching formalities.

UNIT - II

Financing and Managing the new ventures: sources of capital, record keeping, recruitment, motivating and leading teams, financial controls. Marketing and sales controls. E commerce and Entrepreneurship, internet advertising – new venture expansion strategies and issues.

UNIT - III

Industrial Financial Support: schemes and functions of directorate of industries, District industries centre (DICs) Industrial development corporation (IDC), State Financial corporation (SFCs), small scale industries development corporation (SSIDCs) Khadhi and village industries commission (KVIC) Technical Consultancy organisation (TCO), Small industries service institute (SISI), national small industries corporation (NSIC), small industries development bank of india (SIDBI).

UNIT - IV

Production and marketing management: Thrust areas of production management, selection of production techniques, plant utilisation and maintenance, designing the work place, inventory control, material handling and quality control. Marketing functions, market segmentation market research and channels of distribution, sales promotion and product pricing.

UNIT - V

Labour legislation, salient provision of health, safety, and welfare under Indian factories Act, Industrial dispute act, employees state insurance act, workmen's compensation act and payment of bonus act .

TEXT BOOKS:

1. Robert Hisrich, & Michael Peters: Entrepreneurship, TMH, 2009.
2. Dollinger: Entrepreneurship, Pearson, 2009.

REFERENCE BOOKS:

1. Vasant Desai, Dynamics of Entrepreneurial Development and Management, Himalaya Publishing House, 2009.
2. Harvard Business Review on Entrepreneurship, HBR Paper Back.
3. Robert J. Calvin: Entrepreneurial Management, TMH, 2009.
4. Gurmeet Naroola: The entrepreneurial Connection, TMH, 2009.
5. Bolton & Thompson: Entrepreneurs—Talent, Temperament and Techniques, Butterworth Heinemann, 2009.
6. Agarwal: Indian Economy, Wishwa Prakashan 2009.
7. Dutt & Sundaram: Indian Economy, S. Chand, 2009.
8. B D Singh.: Industrial Relations & Labour Laws, Excel, 2009.
9. Aruna Kaulgud: Entrepreneurship Management by, Vikas publishing house, 2009.
10. Essential of entrepreneurship and small business management by Thomas W. Zimmerer & Norman M. Seaborough, PHI-2009.

6 le 2 ~~2015~~ J. Radhakrishnan *Abdullah* *21 M/S*

Abdullah

21 M/S

INDUSTRIAL ROBOTICS (PROFESSIONAL ELECTIVE – V)

B.Tech. IV Year, II Sem.

L	T	P	C
3	0	0	3

Pre-requisites: Basic principles of Kinematics and mechanics

Course Objectives: The goal of the course is to familiarize the students with the concepts and techniques in robotic engineering, manipulator kinematics, dynamics and control, chose, and incorporate robotic technology in engineering systems.

- Make the students acquainted with the theoretical aspects of Robotics
- Enable the students to acquire practical experience in the field of Robotics through design projects and case studies.
- Make the students to understand the importance of robots in various fields of engineering.
- Expose the students to various robots and their operational details.

Course Outcomes: At the end of the course, the student will be able to:

- Understand the basic components of robots.
- Differentiate types of robots and robot grippers.
- Model forward and inverse kinematics of robot manipulators.
- Analyze forces in links and joints of a robot.
- Programme a robot to perform tasks in industrial applications.
- Design intelligent robots using sensors.

UNIT – I:

Introduction: Automation and Robotics – An over view of Robotics – present and future applications. **Components of the Industrial Robotics:** common types of arms. Components, Architecture, number of degrees of freedom – Requirements and challenges of end effectors, Design of end effectors, Precision of Movement: Resolution, Accuracy and Repeatability, Speed of Response and Load Carrying Capacity.

UNIT – II:

Motion Analysis: Basic Rotation Matrices, Equivalent Axis and Angle, Euler Angles, Composite Rotation Matrices. Homogeneous transformations as applicable to rotation and translation – problems. **Manipulator Kinematics**-H notation-H method of Assignment of frames-H Transformation Matrix, joint coordinates and world coordinates, Forward and inverse kinematics – problems on Industrial Robotic Manipulators.

UNIT – III:

Differential transformation of manipulators, Jacobians – problems. Dynamics: Lagrange – Euler and Newton – Euler formations – Problems.

Trajectory planning and avoidance of obstacles, path planning, Slew motion, joint interpolated motion – straight line motion.

UNIT – IV:

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison of Actuators, Feedback components: position sensors –

potentiometers, resolvers, encoders – Velocity sensors, Tactile and Range sensors, Force and Torque sensors – End Effectors and Tools

UNIT V:

Robot Application in Manufacturing: Material Transfer - Material handling, loading and unloading- Processing - spot and continuous arc welding & spray painting - Assembly and Inspection. Robotic

Programming Methods – Languages: Lead Through Programming, Textual Robotic Languages such as APT, MCL.

TEXT BOOKS:

1. Industrial Robotics / Groover M P /Mc Graw Hill
2. Introduction to Industrial Robotics / Ramachandran Nagarajan / Pearson

REFERENCE BOOKS:

1. Robot Dynamics and Controls / Spony and Vidyasagar / John Wiley
2. Robot Analysis and control / Asada, Slotine / Wiley Inter-Science.
3. Robotics – Fu et al / TMH Publications.

1. 2. ~~3.~~

3. *Reddyulu* *Abhishek* *6/02*

g. HQ

MECHANICAL VIBRATIONS (PROFESSIONAL ELECTIVE – V)

B.Tech. IV Year, II Sem.

L	T	P	C
3	0	0	3

Pre-requisites: Engineering Mechanics.

Course objectives: To Understand various types of vibrations.

Course Outcomes: At the end of the course, the student will be able to.

- Understand the causes and effects of vibration in mechanical systems.
- Develop schematic models for physical systems and formulate governing equations of motion
- Understand the role of damping, stiffness and inertia in mechanical systems
- Analyze rotating and reciprocating systems and compute critical speeds.
- Analyze and design machine supporting structures, vibration isolators and absorbers.

UNIT – I:

Single degree of Freedom systems - I: Undamped and damped free vibrations; forced vibrations; coulomb damping; Response to excitation; rotating unbalance and support excitation; vibration isolation and transmissibility.

UNIT - II:

Single degree of Freedom systems - II: Response to Non-Periodic Excitations: unit impulse, unit step and unit Ramp functions; response to arbitrary excitations, The Convolution Integral; shock spectrum; System response by the Laplace Transformation method.

UNIT - III:

Two-degree freedom systems: Principal modes- undamped and damped free and forced vibrations; undamped vibration absorbers;

Multi degree freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi- rotor systems and geared systems; Discrete- Time systems.

UNIT - IV:

Continuous system: Free vibration of strings – longitudinal oscillations of bars- traverse vibrations of beams- Torsional vibrations of shafts.

Critical speeds of shafts: Critical speeds without and with damping, secondary critical speed.

Numerical Methods: Rayleigh's, Stodola's, Matrix iteration, Rayleigh- Ritz Method and Holzer's methods.

Vibration measuring instruments: Vibrometers, velocity meters & accelerometers

UNIT - V:

Sound level and subjective response to sound: Subjective response to sound, frequency dependent human response to sound, sound-pressure dependent human response, the decibel scale, relationship among sound power, sound intensity and sound pressure level, relationship between

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

sound power level and sound intensity, relationship between sound intensity level and sound pressure level, sound measuring instruments.

TEXT BOOKS:

1. Elements of Vibration Analysis / Meirovitch/ Mc Graw Hill
2. Principles of Vibration / Benson H. Tongue/Oxford

REFERENCE BOOKS:

1. Mechanical Vibrations / SS Rao / Pearson
2. Mechanical Vibration /Rao V. Dukkipati, J Srinivas/ PHI.
3. Mechanical Vibrations/ G.K. Grover/ Nemchand & Brothers.

1. 6 > ~~2~~ 3. *W. S. R.* *1/2*
8. *H. P.* *6/102*

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

COMPOSITE MATERIALS (PROFESSIONAL ELECTIVE – V)

B.Tech. IV Year, II Sem.

L	T	P	C
3	0	0	3

Course objectives:

- Develop understanding of the structure of ceramic materials on multiple length scales.
- Develop knowledge of point defect generation in ceramic materials, and their impact on transport properties.
- To describe key processing techniques for producing metal, ceramic-, and polymer-matrix composites.
- To demonstrate the relationship among synthesis, processing, and properties in composite materials.

Course Outcomes: At the end of the course student will be able to

- Understand the crystal structures of a wide range of ceramic materials and glasses.
- explain how common fibers are produced and how the properties of the fibers are related to the internal structure.
- select matrices for composite materials in different applications.
- describe key processing methods for fabricating composites.

UNIT - I:

Introduction: Definition, Classification of Composite materials based on structure, based on matrix, Advantages of composites, Applications of composites, Functional requirements of reinforcement and matrix.

UNIT - II:

Types of reinforcements and their properties: Fibers: Carbon, Boron, Glass, Aramid, Al₂O₃, SiC, Nature and manufacture of glass, carbon and aramid fibres, Comparison of fibres. Role of interfaces: Wettability and Bonding, The interface in Composites, Interactions and Types of bonding at the Interface, Tests for measuring Interfacial strength.

UNIT - III:

Fabrication of Polymeric Matrix Composites, Structure and properties of Polymeric Matrix Composites, Interface in Polymeric Matrix Composites, Applications; Fabrication of Ceramic Matrix Composites, Properties of Ceramic Matrix Composites, Interface in Ceramic Matrix Composites, Toughness of Ceramic Matrix Composites Applications of Ceramic Matrix Composites.

UNIT - IV:

Fabrication of Metal Matrix Composites: Solid state fabrication, Liquid state fabrication and In-situ fabrication techniques; Interface in Metal Matrix Composites: Mechanical bonding, Chemical bonding and Interfaces in In-situ Composites; Discontinuously reinforced Metal Matrix Composites, Properties and Applications. Fabrication of Carbon fiber composites, properties, interface and applications.

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V:

Micromechanics of Composites: Density, Mechanical Properties: Prediction of Elastic constants, Micro mechanical approach, Halpin-Tsai equations, Transverse stresses; Thermal properties: Hydrothermal stresses and Mechanics of Load transfer from matrix to fiber.

TEXTS BOOKS:

1. Composite Materials – Science & Engineering, K.K. Chawla, Springer-Verlag, New York, 1987.
2. An Introduction to Composite Materials, Hull, Cambridge, 2nd Edt. 1997.

REFERENCE BOOKS:

1. Composites, Engineered Materials Handbook, Vol. 1, ASM International, Ohio, 1988.
2. Structure and Properties of Composites, Materials Science and Technology, Vol. 13, VCH, Weinheim, Germany, 1993.
3. Composite Materials: Engineering and Science, F.L. Matthews and R.D. Rawlings, Chapman & Hall, London, 1994.

1. Dr. 2. ~~Signature~~ 3. ~~Signature~~ 4. ~~Signature~~ 5. ~~Signature~~ 6. Dr. ✓
8. MG

ENERGY CONSERVATION AND MANAGEMENT (PROFESSIONAL ELECTIVE – V)

B.Tech. IV Year, II Sem.

L	T	P	C
3	0	0	3

Course Objectives:

- To understand the principles of energy conservation
- To understand thermal insulation & refractories.
- To know waste heat recovery systems.
- To gain knowledge about engineering economics.
- To impart knowledge Energy management programs.

Course Outcomes: At the end of the course, student will be able to

- Understand the basic concept of energy conservation and its role in energy management.
- Focus on thermal Insulation & refractories, classification and applications.
- Discuss the energy conservation opportunities in the energy intensive industries by waste heat recovery system.
- Analyze the quantum of electrical energy that can be saved by the use of energy efficient lighting systems and energy audit parameters.
- Understand concept of Project management and energy management Programs

UNIT-I:

Energy Conservation: Rules for efficient energy conservation – technologies for energy conservation – outline of waste heat and material reclamation, load management, alternate energy sources, and energy storage.

UNIT-II:

Thermal Insulation & Refractories: Heat loss through un-insulated surfaces, effects of insulation on current carrying wires – economic thickness of insulation – critical radius of insulation – properties of thermal insulators – classification of insulation materials – classification of refractories – properties of refractories – criteria for good refractory material – applications of insulating & refractory materials.

UNIT-III:

Waste Heat Recovery Systems: Guideline to identify waste heat – feasibility study of waste heat – shell and tube heat exchanger – thermal wheel – heat pipe heat exchanger – heat pump – waste heat boilers – incinerators.

Heat Recovery Systems & Heat Exchanger Networks: Liquid to liquid heat exchangers – gas to liquid heat recovery systems, regenerators, recuperators, rotating regenerators – miscellaneous heat recovery methods – selection of materials for heat exchangers – combined radiation and convective heat exchanger, U tube heat exchanger, tube heat exchanger, fluidized bed heat exchanger – economizer.

UNIT-IV:

Engineering Economics: Managerial objectives, steps in planning – efficiency of organization – capital budgeting – classification of costs – interest – types – nominal and effective interest rates –

1. Dr. S. A. S. 2. Mr. S. A. S. 3. Mr. S. A. S. 4. Mr. S. A. S.

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

discrete and continuous compounding – discounting - time value of money – cash flow diagrams – present worth factor, capital recovery factor, equal annual payments – equivalent between cash flows. ENERGY AUDITING: A definition – objectives – level of responsibility – control of energy – uses of energy – check lists – energy conservation schemes – energy index – cost index – pie charts – sankey diagrams – load profiles – types of energy audits – questionnaire – energy audit of industries – general energy audit – detailed energy audit – energy saving potential

UNIT-V:

Project Management

Method of investment appraisal – rate of return method, pay back method, net present value method (NPV) – adoption of the methods in energy conservation campaign – types of projects – propose of project management – classification – role and qualities of project manager – types of budgets - budget committee – budgeting.

Energy Management Programs: Necessary steps of energy management programme – concepts of energy management – general principles of energy management – energy management in manufacturing and process industries – qualities and functions of energy managers – duties of energy manager - language of energy manager – checklist for top management.

TEXT BOOKS:

1. Waste heat recovery systems -D.A. Reay/Pergmon Press.
2. Energy Management -W.R. Murphy & G. Mickay, Butterworths

REFERENCE BOOKS:

1. Energy Conservation -P.W.O' Callaghan, Pargamon Press 1981.
2. Engineering Heat Audits -C.P. Gupta & Rajendra Prakash, Nechand & Bros.
3. Hand book of energy audits -Albert Thumann, The F.Airmont Press Inc., Atlanta Georgia, 1979.
4. Energy Management Principles -Craig B. Smith, Pergarmon Press.

1. 6 2. ~~3. Rudolph~~ 3. Rudolph ~~4. 5.~~ Ash shells to Dr
2. H.G.

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

INDUSTRY 4.0 (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year, II Sem.

L	T	P	C
3	0	0	3

Course Objectives: The objectives of this course are

- To understand the basics of Industry 4.0
- To understand the Business model and impact of IIoT
- To understand the concepts of virtual reality, lean manufacturing
- To gain knowledge of various sensors and actuators.
- To understand various data transmission technologies.

Course Outcomes: After completion of the course the student will be able to

- Explain Smart Business Perspective, Cyber security, Impacts of Industry 4.0.
- Understand the basics of the Industrial Internet of Things.
- Understand various key technologies.
- Implement various sensors and actuators.
- Understand different industrial transmission technologies and IIOT applications in real life

UNIT - I:

Industry 4.0 Basics: Industrial revolution: Phases, Evolution of Industry4.0, Environmental impacts of industrial revolution, Applications, Design requirements, Drivers of Industry4.0, Sustainability Assessment of industries, Smart Business Perspective, Cyber security, Impacts of Industry 4.0.

UNIT – II:

Industrial Internet of Things- Basics: IIoT and Industry 4.0, IIC, Industrial Internet Systems, Design of industrial internet systems, Impact of industrial internet, Benefits of industrial internet, Industrial sensing, Industrial Processes, Features of IIoT for industrial processes, Industrial plant-The future architecture, Digital Enterprise

Business Models and Reference Architecture of IIoT: Definition of a business model, Business models of IIoT, Industrial Internet Reference Architecture

UNIT -III:

Key Technologies: Off-site Technologies, Cloud Computing, Fog Computing

Key Technologies: On-site Technologies, Augmented Reality, Virtual Reality, Smart factories, Lean manufacturing system, Big Data and Advanced Analytics

UNIT -IV:

Sensors: Various sensor types and their underlying working principles, Characteristics of Sensors – Resolution, calibration, accuracy and others, Sensor Categories – Thermal, Mechanical, Electrical, Optical and Acoustic sensors.

Actuators: Thermal, Hydraulic, Pneumatic, Electro mechanical Actuator

1 Br 2. ~~Scop~~ & ~~Malaya~~ ~~ab~~ Ash Shelt ~~ab~~ 3 MG

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT – V:

Industrial Data Transmission and Acquisition: Architecture of various data transmission technologies like Foundation Fieldbus, Profibus, Highway Addressable Remote Transducer (HART), Interbus, Bitbus, Digital STROM, Controller Area Network, and other recent and upcoming Technologies. Distributed Control System, SCADA and PLC System.

IIOT Applications: IoT Applications on Industrial automation, Factories and Assembly line, Plant Security and Safety, Transportation, Agriculture, Healthcare, Home Automation, Oil Chemical and Pharmaceutical Industry and others

TEXT BOOKS:

1. Introduction to Industrial Internet of Things and Industry 4.0 by Sudip Misra, Chandana Roy, Anandarup Mukherjee, CRC Press
2. Vijay Madisetti, Arshdeep Bahga, Internet of Things, "A Hands-on Approach", University Press.

REFERENCE BOOKS:

1. Dr. SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet of Things: A practical Approach", ETI Labs
2. Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press
3. Adrian McEwen, "Designing the Internet of Things", Wiley.
4. Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill.
5. Cuno Pfister, "Getting Started with the Internet of Things", O Reilly Media

1. le 2. skof 3. Rubayat RA 4. Ashish 5. ve
7. HQ

FUZZY LOGIC AND ANN (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year, II Sem.

L	T	P	C
3	0	0	3

Prerequisite: Operations research, Optimisation Techniques, Control Systems

Course Objectives: The goal of this course is to give a good basic understanding of Neural Networks and Fuzzy Logic. This course is mainly intended for engineers who desire to learn more about these techniques

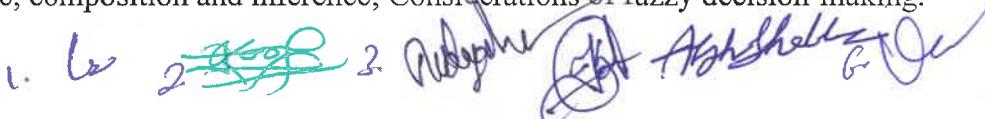
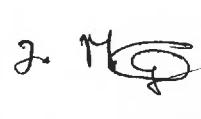
Course outcomes: After completion of this course, the student will be able to

- Understand the concepts of neural networks and fuzzy logics
- Understand the topology of multi-layer perceptron, recurrent neural networks and
- Fuzzification & Defuzzification.
- Understand the basic structure and operation of Fuzzy logic control systems

UNIT-I:

Evolution of neural networks; Artificial Neural Network: Basic model, Classification, Feed forward and Recurrent topologies, Activation functions; Learning algorithms: Supervised, Unsupervised and Reinforcement; Fundamentals of connectionist modeling: McCulloch – Pits model, Perceptron, Adaline, Madaline.

UNIT-II:



Topology of Multilayer perceptron, Back propagation learning algorithm, limitations of Multilayer perceptron. Radial Basis Function networks: Topology, learning algorithm; Kohonen's self-organising network: Topology, learning algorithm; Bidirectional associative memory Topology, learning algorithm, Applications.

UNIT-III:

Recurrent neural networks: Basic concepts, Dynamics, Architecture and training algorithms, Applications; Hopfield network: Topology, learning algorithm, Applications; Industrial and commercial applications of Neural networks: Semiconductor manufacturing processes, Communication, Process monitoring and optimal control, Robotics, Decision fusion and pattern recognition.

UNIT-IV:

Classical and fuzzy sets: Introduction, Operations and Properties, Fuzzy Relations: Cardinality, Operations and Properties, Equivalence and tolerance relation, Value assignment: cosine amplitude and max-min method; Fuzzification: Membership value assignment- Inference, rank ordering, angular fuzzy sets. Defuzzification methods, Fuzzy measures, Fuzzy integrals, Fuzziness and fuzzy resolution; possibility theory and Fuzzy arithmetic; composition and inference; Considerations of fuzzy decision-making.

1. 2.

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT-V:

Basic structure and operation of Fuzzy logic control systems; Design methodology and stability analysis of fuzzy control systems; Applications of Fuzzy controllers. Applications of fuzzy theory.

TEXT BOOKS:

1. Neural Networks in Computer Intelligence by Limin Fu, McGraw Hill, 2003.
2. Soft Computing and Intelligent Systems Design, Theory, Tools and Applications by Fakhreddine O. Karray and Clarence De Silva., Pearson Education, India, 2009.

REFERENCE BOOKS:

1. Fuzzy Logic with Engineering Applications by Timothy J. Ross, McGraw Hill, 1995.
2. Artificial Neural Networks by B. Yegnanarayana, PHI, India, 2006.

ELECTRIC AND HYBRID VEHICLES (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year, II Sem.

L	T	P	C
3	0	0	3

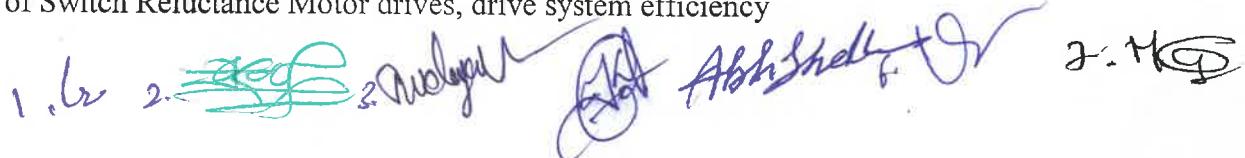
Course Objectives:

- Explain the history of Electric vehicles and development
- Discuss the Social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies
- Explore to basic concept of electric traction, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives etc.
- Analyse the Fuel Cell based energy storage and Super Capacitor based energy storage etc.
- Explore to types of Driving Cycles, Range modelling for Battery Electric Vehicle, Hybrid (ICE & others) etc.

Course Outcomes: At the end of the course student will be able to

- Choose the appropriate source of energy for the hybrid electric vehicle based on driving cycle.
- Analyze the power and energy need of the various hybrid electric vehicle and Measure and Estimate the energy consumption of the Hybrid Vehicles
- Evaluate energy efficiency of the vehicle for its drive trains
- Elaborate the types of storage systems such as battery based, fuel cell based etc.
- Explain the types of Driving Cycles, Fuel Cell EV, Solar Powered Vehicles

UNIT- I:


Introduction To Electric Vehicle: History of Electric Vehicles, Development towards 21st Century, Types of Electric Vehicles in use today – Battery Electric Vehicle, Hybrid (ICE & others), Fuel Cell EV, Solar Powered Vehicles. Motion and Dynamic Equations of the Electric Vehicles: various forces acting on the Vehicle in static and dynamic conditions.

UNIT- II:

Introduction To Hybrid and Electric Vehicles: Social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid Drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis

UNIT- III:

Electric Drive Trains: Basic concept of electric traction, introduction to various electric drivetrain topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency

1. Dr. 2. ~~Asst. Prof. 2. Asst. Prof.~~ 3. Prof. Ashish Patel 4. Prof. J. V. M. K. S.

UNIT- IV:

Types of Storage Systems: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Calculation for the rating.

UNIT- V:

Modelling of Hybrid Electric Vehicle Range: Driving Cycles, Types of Driving Cycles, Range modelling for Battery Electric Vehicle, Hybrid (ICE & others), Fuel Cell EV, Solar Powered Vehicles. Case study of 2 wheeler, 3 wheeler and 4 wheeler vehicles.

TEXT BOOKS

1. James Larminie, J. Lowry, "Electric Vehicle Technology Explained", John Wiley & Sons Ltd. 2003.
2. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.

REFERENCE BOOKS

1. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2016.
2. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2010.

1. Dr. 2. 3. 4.
5.

TOTAL QUALITY MANAGEMENT (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year, II Sem.

L	T	P	C
3	0	0	3

Course Objectives:

- Develop an understanding of the necessary information and skills needed to manage, control and improve quality practices in the organizations through TQM philosophy.
- To understand customer and supplier relationship and Bench marketing.
- Apply TQM in traditional organizations.
- Analysis of quality in cost and management.
- To understand various ISO around the world.

Course Outcomes: After completion of the course the student will be able to

- Understand the concept of TQM and various control charts
- To analyze the relationship between customer and supplier
- Implement TQM in an organization
- To evaluate the cost of quality
- Understand the third-party audit and documentation of various ISO audits

UNIT – I:

Introduction: The concept of TQM, Quality and Business performance, attitude and involvement of top management, communication, culture and management systems. **Management of Process Quality:** Definition of quality, Quality Control, a brief history, Product Inspection vs, Process Control, Statistical Quality Control, Control Charts and Acceptance Sampling.

UNIT – II:

Customer Focus and Satisfaction: Process Vs. Customer, internal customer conflict, quality focus, **Customer Satisfaction:** role of Marketing and Sales, Buyer – Supplier relationships. **Bench Marketing:** Evolution of Bench Marketing, meaning of Bench marketing, benefits of bench marketing, the bench marketing process, pitfalls of bench marketing.

UNIT – III:

Organizing for TQM: The systems approach, organizing for quality implementation, making the transition from a traditional to a TQM organizing, **Quality Circles:** Productivity, Quality and **Reengineering:** The leverage of Productivity and Quality, Management systems Vs. Technology, Measuring Productivity, Improving Productivity Re-engineering.

UNIT – IV:

The Cost of Quality: Definition of the Cost of Quality, Quality Costs, Measuring Quality Costs, use of Quality Cost Information, Accounting Systems and Quality Management.

1. b 2. ~~sof~~ 3. ~~Rudra~~ 4. ~~Abhishek~~ 5. ~~De~~ 6. ~~HG~~

Sreyas Institute of Engineering and Technology

An Autonomous Institution

Approved by AICTE, Affiliated to JNTUH

Accredited by NAAC-A Grade, NBA (CSE, ECE & ME) & ISO 9001:2015 Certified

UNIT - V:

ISO9000: Universal Standards of Quality: ISO around the world, The ISO9000 ANSI/ASQCQ-90. Series Standards, benefits of ISO9000 certification, the third-party audit, Documentation ISO9000 and services, the cost of certification implementing the system.

TEXT BOOKS:

1. Total Quality Management: Text, cases and Readings, Third Edition - Joel E. Ross.
2. Beyond TQM - Robert L. Flood.

REFERENCE BOOKS:

1. Statistical Quality Control – Eugene Grant, Richard McGraw-Hill, 2017.
2. Total Quality Management, Besterfiled D. H., Pearson Education Asia – 2015-4th Edition
3. The Management and Control of Quality, Evans J. R, and Lindsay W. M., Southwestern (Thomson Learning), Fifth Edition

*i. b. 2 - ~~160B~~ & ~~160A~~ ✓ *Abhishek B. Va*
*J. H. S.**

INDUSTRIAL ENGINEERING & MANAGEMENT (OPEN ELECTIVE – III)

B.Tech. IV Year, II Sem.

L	T	P	C
3	0	0	3

Prerequisites: None

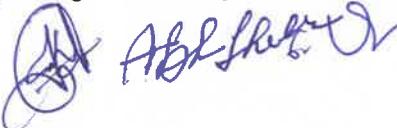
Course objectives: The main objectives of this course are the following to Learn:

- Philosophies of various management gurus & characteristics of various organization structures
- Various Industrial Engineering practices
- Human resource management practices
- Network analysis through PERT and CPM techniques

Course outcomes: At the end of course, students will be able to

- Practice the management theories proposed by Taylor, Fayol etc
- Consider various factors and identify plant location for given industry.
- Determine EOQ, classify items and implement P-system and Q-system
- Conduct work study (method study+ Work measurement: a) Time study & Work sampling))
- Practice HRM principles
- Analyze the networks by using PERT & CPM

UNIT - I:


Management and Organization – Functions of Management - Contributions of Taylor, Fayol, Douglas Mc-Gregor, Mayo Hertzberg and Maslow. – Systems Approach to Management - Organizational Structures: Basic concepts related to Organization - Departmentation and Decentralization, Types of mechanistic and organic structures of organization and their merits, demerits and suitability.

UNIT- II:

Operations Management-I: Plant location, definition, factors affecting the plant location, comparison of rural and urban sites-methods for selection of plant- Matrix approach. Types of plant layout – various data analyzing forms-travel chart - Work study: Method study and Work measurement. Inventory – functions, types, Determination of Economic Order Quantity (EOQ), ABC and VED analysis. Inventory Control Systems-Continuous review system-periodical review system. Stores Management and Stores Records. Purchase management, duties of purchase of manager, JIT System.

UNIT - III:

Operations Management-II: Inspection and quality control, types of inspections - Statistical Quality Control-techniques- Charts for variables and attributes. Acceptance sampling plan- single sampling and double sampling plans-OC curves. Introduction to TQM-Quality Circles, ISO 9000 series procedures. Functions of Marketing, Marketing vs Selling, Marketing mix, Product Life Cycle.

1. C 2. 3. 4.

UNIT - IV:

Human Resources Management (HRM): Concepts of HRM, HRD and Personnel Management and Industrial Relations (PMIR), HRM vs PMIR, Basic functions of HR Manager: Manpower planning, Recruitment, Selection, Training and Development, Placement, Wage and Salary Administration, Promotion, Transfer, Separation, Performance Appraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating – Capability Maturity Model (CMM) Levels – Performance Management System.

UNIT- V:

PERT/CPM: Project management, network modelling-probabilistic model, various types of activity time's estimation-programme evaluation review techniques- Critical Path-probability of completing the project, Critical Path Method (CPM) - Project crashing. Simple problems.

TEXT BOOKS:

1. Aryasri, Management Science, McGraw hill, 2012
2. Kumar, Rao and Chhalill: Introduction to Management Science, Cengage 2012.

REFERENCE BOOKS:

1. Stoner, Freeman, Gilbert, Management, Pearson Education, New Delhi, 2012.
2. Amrine, Manufacturing Organization and Management, Pearson, 2012.
3. Chase, Jacobs, Aquilano, Operations Management, McGraw Hill, 2012.
4. Panner Selvam, Production and Operations Management, PHI, 2012.
5. Nadha Muni Reddy & Vijaya Kumar Reddy, Reliability Engineering & Quality Engineering, Galgotia, 2012.
6. Ralph M Barnes, Motion and Time Studies, John Wiley and Sons, 2012.
7. L. S. Srinath, PERT / CPM, Affiliate East-West Press, New Delhi, 2012.
8. Gary Dessler, Human Resource Management, Pearson Education Asia, 2012.
9. Phillip Kotler, Marketing Management, Pearson, 2012.
10. S. K. Basu, K. C. Sahu, B. Rajiv: Industrial Organization and Management, PHI, 2012.
11. Dipak Kumar Bhattacharyya: Industrial Management, Vikas publishing house 2013.

1. Dr 2. ~~Kal~~ 3. ~~Rubayat~~ 4. ~~Abhijit~~ 5. ~~Abhijit~~ 6. ~~Abhijit~~
7. ~~HQ~~

ELEMENTS OF ELECTRIC AND HYBRID VEHICLES (OPEN ELECTIVE – III)

B.Tech. IV Year, II Sem.

L	T	P	C
3	0	0	3

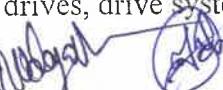
Course Objectives

- Explain the history of Electric vehicles and development
- Discuss the Social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies
- Explore to basic concept of electric traction, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives etc.
- Analyse the Fuel Cell based energy storage and Super Capacitor based energy storage etc.
- Explore to types of Driving Cycles, Range modelling for Battery Electric Vehicle, Hybrid (ICE & others) etc.

Course Outcomes: At the end of the course student will be able to

- Choose the appropriate source of energy for the hybrid electric vehicle based on driving cycle.
- Analyze the power and energy need of the various hybrid electric vehicle and Measure and Estimate the energy consumption of the Hybrid Vehicles
- Evaluate energy efficiency of the vehicle for its drive trains
- Elaborate the types of storage systems such as battery based, fuel cell based etc.
- Explain the types of Driving Cycles, Fuel Cell EV, Solar Powered Vehicles

UNIT- I:


Introduction to Electric Vehicle: History of Electric Vehicles, Development towards 21st Century, Types of Electric Vehicles in use today – Battery Electric Vehicle, Hybrid (ICE & others), Fuel Cell EV, Solar Powered Vehicles. Motion and Dynamic Equations of the Electric Vehicles: various forces acting on the Vehicle in static and dynamic conditions.

UNIT- II:

Introduction to Hybrid and Electric Vehicles: Social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid Drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis

UNIT- III:

Introduction to Electric Drive Trains: Basic concept of electric traction, introduction to various electric drive train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency

1.6 2. 3. 15/2/16

UNIT- IV:

Types of Storage Systems: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Calculation for the rating.

UNIT- V:

Modelling of Hybrid Electric Vehicle Range: Driving Cycles, Types of Driving Cycles, Range modelling for Battery Electric Vehicle, Hybrid (ICE & others), Fuel Cell EV, Solar Powered Vehicles. Case study of 2-wheeler, 3 wheeler and 4 wheeler vehicles.

TEXT BOOKS

1. James Larminie, J. Lowry, "Electric Vehicle Technology Explained", John Wiley & Sons Ltd. 2003.
2. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.

REFERENCE BOOKS

1. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2016.
2. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2010.

1. *Le* *3* *g* *Ashish* 6. *Dr*
2. MC

